Steve Lack

Associate Professor

  • 1015 Citations
  • 16 h-Index
19932018

Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

  • 6 Similar Profiles
Monads Mathematics
Monoidal Category Mathematics
Functor Mathematics
Colimit Mathematics
Bicategory Mathematics
Adhesives Mathematics
Morphisms Mathematics
Skew Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2009 2016

Monoidal categories and beyond: new contexts and new applications

Street, R., Verity, D., Lack, S., Garner, R. & MQRES Inter Tuition Fee only, M. I. T. F. O.

30/06/16 → …

Project: Research

Centre of Australian Category Theory (CoACT)

Lack, S., Verity, D., Street, R., Chikhladze, D., Cohen, J., Corbett, J., Davydov, A., Flax, L., Kennett, C., Paoli, S., Palm, T., Pastro, C., Weber, M., Valckenborgh, F., Batanin, M. & Johnson, M.

1/01/09 → …

Project: Research

Structural homotopy theory: a category-theoretic study

Street, R., Lack, S., Verity, D., Garner, R., MQRES, M., MQRES 3 (International), M. 3., MQRES 4 (International), M. & MQRES (International), M. (.

1/01/1331/12/16

Project: Research

Algebraic categories and categorical algebra (MQ)

Lack, S.

13/02/1212/02/14

Project: Research

Research Output 1993 2018

Skew monoidal categories and skew multicategories

Bourke, J. & Lack, S. 15 Jul 2018 In : Journal of Algebra. 506, p. 237-266 30 p.

Research output: Contribution to journalArticle

Monoidal Category
Skew
Correspondence

A category of multiplier bimonoids

Böhm, G. & Lack, S. 2017 In : Applied Categorical Structures. 25, 2, p. 279-301 23 p.

Research output: Contribution to journalArticle

Algebra
Multiplier
Morphisms
Monoidal Category
Morphism

Free skew monoidal categories

Bourke, J. & Lack, S. 21 Dec 2017 In : Journal of Pure and Applied Algebra. 222, 10, p. 3255-3281 27 p.

Research output: Contribution to journalArticle

Monoidal Category
Skew
Operad
Adjunction
Triangulation

Multiplier Hopf monoids

Böhm, G. & Lack, S. 2017 In : Algebras and Representation Theory. 20, 1, p. 1-46 46 p.

Research output: Contribution to journalArticle

Monoids
Multiplier
Monoid
Multiplier Algebra
Antipode

Homotopy locally presentable enriched categories

Lack, S. & Rosický, J. 2 Aug 2016 In : Theory and Applications of Categories. 31, p. 712-754 43 p., 25

Research output: Contribution to journalArticle

Enriched Category
Homotopy
Link Homotopy
Colimit
Model Category