Steve Lack

Associate Professor

  • 1172 Citations
  • 18 h-Index
1993 …2022
If you made any changes in Pure these will be visible here soon.

Fingerprint Dive into the research topics where Steve Lack is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 5 Similar Profiles
Monads Mathematics
Monoidal Category Mathematics
Functor Mathematics
Colimit Mathematics
Bicategory Mathematics
Adhesives Mathematics
Morphisms Mathematics
Skew Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Projects 2009 2022

Monoidal categories and beyond: new contexts and new applications

Street, R., Verity, D., Lack, S., Garner, R. & MQRES Inter Tuition Fee only, M. I. T. F. O.

30/06/16 → …

Project: Research

Centre of Australian Category Theory (CoACT)

Lack, S., Verity, D., Street, R., Chikhladze, D., Cohen, J., Corbett, J., Davydov, A., Flax, L., Kennett, C., Paoli, S., Palm, T., Pastro, C., Weber, M., Valckenborgh, F., Batanin, M. & Johnson, M.

1/01/09 → …

Project: Research

Structural homotopy theory: a category-theoretic study

Street, R., Lack, S., Verity, D., Garner, R., MQRES, M., MQRES 3 (International), M. 3., MQRES 4 (International), M. & MQRES (International), M. (.

1/01/1331/12/16

Project: Research

Algebraic categories and categorical algebra (MQ)

Lack, S.

13/02/1212/02/14

Project: Research

Research Outputs 1993 2018

Free skew monoidal categories

Bourke, J. & Lack, S., Oct 2018, In : Journal of Pure and Applied Algebra. 222, 10, p. 3255-3281 27 p.

Research output: Contribution to journalArticleResearchpeer-review

Monoidal Category
Skew
Operad
Adjunction
Triangulation

Hochschild homology, lax codescent, and duplicial structure

Garner, R., Lack, S. & Slevin, P., 2018, In : Annals of k-Theory. 3, 1, p. 1-31 31 p.

Research output: Contribution to journalArticleResearchpeer-review

Skew monoidal categories and skew multicategories

Bourke, J. & Lack, S., 15 Jul 2018, In : Journal of Algebra. 506, p. 237-266 30 p.

Research output: Contribution to journalArticleResearchpeer-review

Monoidal Category
Skew
Correspondence

Weak multiplier bimonoids

Böhm, G., Gómez-Torrecillas, J. & Lack, S., Feb 2018, In : Applied Categorical Structures. 26, 1, p. 47–111 65 p.

Research output: Contribution to journalArticleResearchpeer-review

Monoidal Category
Linear transformations
Hilbert spaces
Algebra
Multiplier

A category of multiplier bimonoids

Böhm, G. & Lack, S., 2017, In : Applied Categorical Structures. 25, 2, p. 279-301 23 p.

Research output: Contribution to journalArticleResearchpeer-review

Algebra
Multiplier
Morphisms
Monoidal Category
Morphism