Project Details
Description
The early Earth's mantle produced melt at much higher temperature than today, creating rocks with unique chemistries and mineralogies. But pressing knowledge gaps about hot mantle melting remain. The aim of this project is to generate new experimental and empirical knowledge to help closing these gaps by:
(i) conducting high pressure experiments to refine phase-composition relationships and element partitioning; (ii) quantifying mineral fabrics in cratonic peridotites to understand the movement of early continents; and
(iii) constructing the first petrological deep time model for greenstone belt volcanic rocks.
The expected outcomes are better models for the early Earth's melting and tectonic regimes and insight into the emergence of land.
(i) conducting high pressure experiments to refine phase-composition relationships and element partitioning; (ii) quantifying mineral fabrics in cratonic peridotites to understand the movement of early continents; and
(iii) constructing the first petrological deep time model for greenstone belt volcanic rocks.
The expected outcomes are better models for the early Earth's melting and tectonic regimes and insight into the emergence of land.
Short title | DP22 |
---|---|
Acronym | QUT led |
Status | Active |
Effective start/end date | 13/07/22 → 12/07/25 |