β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons

M. Connor, E. E. Bagley, B. C. Chieng, M. J. Christie*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    19 Citations (Scopus)

    Abstract

    Background and Purpose Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. Experimental Approach μ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and β-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. Key Results MOPr inhibition of ICa in PAG neurons was unaffected by β-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT β-arrestin-2 knockouts. However, β-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. Conclusions and Implications In β-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by β-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in β-arrestin-2 knockouts. Linked Articles This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2

    Original languageEnglish
    Pages (from-to)492-500
    Number of pages9
    JournalBritish Journal of Pharmacology
    Volume172
    Issue number2
    DOIs
    Publication statusPublished - Jan 2015

    Keywords

    • arrestins
    • morphine
    • -opioid receptor
    • opioid tolerance
    • opioid withdrawal
    • periaqueductal grey

    Fingerprint

    Dive into the research topics of 'β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons'. Together they form a unique fingerprint.

    Cite this