Projects per year
Abstract
With the development of artificial intelligence, cloud-edge computing and virtual reality, the industrial design that originally depends on human imagination and computing power can be transitioned to metaverse applications in smart manufacturing, which offloads the services of metaverse to cloud and edge platforms for enhancing quality of service (QoS), considering inadequate computing power of terminal devices like industrial sensors and access points (APs). However, large overhead and privacy exposure occur during data transmission to cloud, while edge computing devices (ECDs) are at risk of overloading with redundant service requests and difficult central control. To address these challenges, this paper proposes a minority game (MG) based cloud-edge service offloading method named COM for metaverse manufacturing. Technically, MG possesses a distribution mechanism that can minimize reliance on centralized control, and gains its effectiveness in resource allocation. Besides, a dynamic control of cut-off value is supplemented on the basis of MG for better adaptability to network variations. Then, agents in COM (i.e., APs) leverage reinforcement learning (RL) to work on MG history, offloading decision, QoS mapping to state, action and reward, for further optimizing distributed offloading decision-making. Finally, COM is evaluated using a variety of real-world datasets of manufacturing. The results indicate that COM has 5.38% higher QoS and 8.58% higher privacy level comparing to benchmark method.
Original language | English |
---|---|
Pages (from-to) | 1714-1732 |
Number of pages | 19 |
Journal | Software: Practice and Experience |
Volume | 54 |
Issue number | 9 |
Early online date | 9 Dec 2023 |
DOIs | |
Publication status | Published - Sept 2024 |
Keywords
- cloud-edge computing
- metaverse
- minority game
- reinforcement learning
- service offloading
Fingerprint
Dive into the research topics of 'A cloud-edge service offloading method for the metaverse in smart manufacturing'. Together they form a unique fingerprint.Projects
- 1 Finished
-
DE21 : Scalable and Deep Anomaly Detection from Big Data with Similarity Hashing
1/01/21 → 31/12/23
Project: Research