### Abstract

We describe, analyze, and demonstrate a high-order spectrally accurate surface integral algorithm for simulating time-harmonic electromagnetic waves scattered by a class of deterministic and stochastic perfectly conducting three-dimensional obstacles. A key feature of our method is spectrally accurate approximation of the tangential surface current using a new set of tangential basis functions. The construction of spectrally accurate tangential basis functions allows a one-third reduction in the number of unknowns required compared with algorithms using non-tangential basis functions. The spectral accuracy of the algorithm leads to discretized systems with substantially fewer unknowns than required by many industrial standard algorithms, which use, for example, the method of moments combined with fast solvers based on the fast multipole method. We demonstrate our algorithm by simulating electromagnetic waves scattered by medium-sized obstacles (diameter up to 50 times the incident wavelength) using a direct solver (in a small parallel cluster computing environment). The ability to use a direct solver is a tremendous advantage for monostatic radar cross section computations, where thousands of linear systems, with one electromagnetic scattering matrix but many right hand sides (induced by many transmitters) must be solved.

Original language | English |
---|---|

Pages (from-to) | 4543-4562 |

Number of pages | 20 |

Journal | Journal of Computational Physics |

Volume | 227 |

Issue number | 9 |

DOIs | |

Publication status | Published - 20 Apr 2008 |

Externally published | Yes |

### Keywords

- Bistatic
- Boundary integral
- Electromagnetic scattering
- Galerkin
- Maxwell's equations
- Monostatic
- Quadrature
- Radar cross section
- Spectral
- Tangential vector basis