## Abstract

The subject of this paper is a nerve construction for bicategories introduced by Leinster, which defines a fully faithful functor from the category of bicategories and normal pseudofunctors to the category of presheaves over Joyal's category Θ

To this end, we construct the homotopy bicategory of a 2-quasi-category, and prove that a morphism of 2-quasi-categories is an equivalence if and only if it is essentially surjective on objects and fully faithful. We also prove a Quillen equivalence between Ara's model structure for 2-quasi-categories and the Hirschowitz–Simpson–Pellissier model structure for quasi-category-enriched Segal categories, from which we deduce a few more results about 2-quasi-categories, including a conjecture of Ara concerning weak equivalences of 2-categories.

_{2}. We prove that the nerve of a bicategory is a 2-quasi-category (a model for (∞,2)-categories due to Ara), and moreover that the nerve functor restricts to the right part of a Quillen equivalence between Lack's model structure for bicategories and a Bousfield localisation of Ara's model structure for 2-quasi-categories. We deduce that Lack's model structure for bicategories is Quillen equivalent to Rezk's model structure for (2,2)-Θ-spaces on the category of simplicial presheaves over Θ_{2}.To this end, we construct the homotopy bicategory of a 2-quasi-category, and prove that a morphism of 2-quasi-categories is an equivalence if and only if it is essentially surjective on objects and fully faithful. We also prove a Quillen equivalence between Ara's model structure for 2-quasi-categories and the Hirschowitz–Simpson–Pellissier model structure for quasi-category-enriched Segal categories, from which we deduce a few more results about 2-quasi-categories, including a conjecture of Ara concerning weak equivalences of 2-categories.

Original language | English |
---|---|

Article number | 107138 |

Pages (from-to) | 1-67 |

Number of pages | 67 |

Journal | Advances in Mathematics |

Volume | 368 |

DOIs | |

Publication status | Published - 15 Jul 2020 |

## Keywords

- 2-category
- Bicategory
- 2-quasi-category
- (∞,2)-category
- Nerve
- Model category