A Multi-qubit quantum gate using the Zeno effect

Philippe Lewalle*, Leigh S. Martin, Emmanuel Flurin, Song Zhang, Eliya Blumenthal, Shay Hacohen-Gourgy, Daniel Burgarth, K. Birgitta Whaley

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
33 Downloads (Pure)

Abstract

The Zeno effect, in which repeated observation freezes the dynamics of a quantum system, stands as an iconic oddity of quantum mechanics. When a measurement is unable to distinguish between states in a subspace, the dynamics within that subspace can be profoundly altered, leading to non-trivial behavior. Here we show that such a measurement can turn a noninteracting system with only single-qubit control into a two- or multi-qubit entangling gate, which we call a Zeno gate. The gate works by imparting a geometric phase on the system, conditioned on it lying within a particular nonlocal subspace. We derive simple closed-form expressions for the gate fidelity under a number of nonidealities and show that the gate is viable for implementation in circuit and cavity QED systems. More specifically, we illustrate the functioning of the gate via dispersive readout in both the Markovian and non-Markovian readout regimes, and derive conditions for longitudinal readout to ideally realize the gate.

Original languageEnglish
Article number1100
Pages (from-to)1-32
Number of pages32
JournalQuantum
Volume7
DOIs
Publication statusPublished - 2023

Bibliographical note

Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'A Multi-qubit quantum gate using the Zeno effect'. Together they form a unique fingerprint.

Cite this