A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures

Ahmad Almatroudi, Honghua Hu, Anand Deva, Iain B. Gosbell, Anita Jacombs, Slade O. Jensen, Greg Whiteley, Trevor Glasbey, Karen Vickery

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. Aim: The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. Methods: The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12. days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. Results: The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 107CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued dehydration and ageing of the model biofilm for 30days increased the % of protein, marginally decreased gylcoconjugate % but reduced extracellular DNA by 2/3. The surface of both model and clinical biofilms was rough reflecting the heterogeneous nature of biofilm formation. The average maximum thickness was 30.74±2.1μm for the in vitro biofilm model and between 24 and 47μm for the clinical biofilms examined. Conclusion: The laboratory developed biofilm was similar to clinical biofilms in architecture and composition. We propose that this method is suitable for evaluating the efficacy of surface cleaners and disinfectants in removing biofilm formed on dry clinical surfaces as both within run and between run variation was low, and the required equipment is easy to use, cheap and readily available.

LanguageEnglish
Pages171-176
Number of pages6
JournalJournal of Microbiological Methods
Volume117
DOIs
Publication statusPublished - 1 Oct 2015

Fingerprint

Decontamination
Biofilms
Staphylococcus aureus
polycarbonate
Disinfectants
Centers for Disease Control and Prevention (U.S.)
Dehydration

Cite this

Almatroudi, Ahmad ; Hu, Honghua ; Deva, Anand ; Gosbell, Iain B. ; Jacombs, Anita ; Jensen, Slade O. ; Whiteley, Greg ; Glasbey, Trevor ; Vickery, Karen. / A new dry-surface biofilm model : An essential tool for efficacy testing of hospital surface decontamination procedures. In: Journal of Microbiological Methods. 2015 ; Vol. 117. pp. 171-176.
@article{6b4be7b740524b31bab8f9e969e978d3,
title = "A new dry-surface biofilm model: An essential tool for efficacy testing of hospital surface decontamination procedures",
abstract = "The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. Aim: The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. Methods: The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12. days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV{\%}) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. Results: The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 107CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5{\%} and the between run CV was 10.1{\%}. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued dehydration and ageing of the model biofilm for 30days increased the {\%} of protein, marginally decreased gylcoconjugate {\%} but reduced extracellular DNA by 2/3. The surface of both model and clinical biofilms was rough reflecting the heterogeneous nature of biofilm formation. The average maximum thickness was 30.74±2.1μm for the in vitro biofilm model and between 24 and 47μm for the clinical biofilms examined. Conclusion: The laboratory developed biofilm was similar to clinical biofilms in architecture and composition. We propose that this method is suitable for evaluating the efficacy of surface cleaners and disinfectants in removing biofilm formed on dry clinical surfaces as both within run and between run variation was low, and the required equipment is easy to use, cheap and readily available.",
author = "Ahmad Almatroudi and Honghua Hu and Anand Deva and Gosbell, {Iain B.} and Anita Jacombs and Jensen, {Slade O.} and Greg Whiteley and Trevor Glasbey and Karen Vickery",
year = "2015",
month = "10",
day = "1",
doi = "10.1016/j.mimet.2015.08.003",
language = "English",
volume = "117",
pages = "171--176",
journal = "Journal of Microbiological Methods",
issn = "0167-7012",
publisher = "Elsevier",

}

A new dry-surface biofilm model : An essential tool for efficacy testing of hospital surface decontamination procedures. / Almatroudi, Ahmad; Hu, Honghua; Deva, Anand; Gosbell, Iain B.; Jacombs, Anita; Jensen, Slade O.; Whiteley, Greg; Glasbey, Trevor; Vickery, Karen.

In: Journal of Microbiological Methods, Vol. 117, 01.10.2015, p. 171-176.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - A new dry-surface biofilm model

T2 - Journal of Microbiological Methods

AU - Almatroudi,Ahmad

AU - Hu,Honghua

AU - Deva,Anand

AU - Gosbell,Iain B.

AU - Jacombs,Anita

AU - Jensen,Slade O.

AU - Whiteley,Greg

AU - Glasbey,Trevor

AU - Vickery,Karen

PY - 2015/10/1

Y1 - 2015/10/1

N2 - The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. Aim: The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. Methods: The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12. days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. Results: The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 107CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued dehydration and ageing of the model biofilm for 30days increased the % of protein, marginally decreased gylcoconjugate % but reduced extracellular DNA by 2/3. The surface of both model and clinical biofilms was rough reflecting the heterogeneous nature of biofilm formation. The average maximum thickness was 30.74±2.1μm for the in vitro biofilm model and between 24 and 47μm for the clinical biofilms examined. Conclusion: The laboratory developed biofilm was similar to clinical biofilms in architecture and composition. We propose that this method is suitable for evaluating the efficacy of surface cleaners and disinfectants in removing biofilm formed on dry clinical surfaces as both within run and between run variation was low, and the required equipment is easy to use, cheap and readily available.

AB - The environment has been shown to be a source of pathogens causing infections in hospitalised patients. Incorporation of pathogens into biofilms, contaminating dry hospital surfaces, prolongs their survival and renders them tolerant to normal hospital cleaning and disinfection procedures. Currently there is no standard method for testing efficacy of detergents and disinfectants against biofilm formed on dry surfaces. Aim: The aim of this study was to develop a reproducible method of producing Staphylococcus aureus biofilm with properties similar to those of biofilm obtained from dry hospital clinical surfaces, for use in efficacy testing of decontamination products. The properties (composition, architecture) of model biofilm and biofilm obtained from clinical dry surfaces within an intensive care unit were compared. Methods: The CDC Biofilm Reactor was adapted to create a dry surface biofilm model. S. aureus ATCC 25923 was grown on polycarbonate coupons. Alternating cycles of dehydration and hydration in tryptone soy broth (TSB) were performed over 12. days. Number of biofilm bacteria attached to individual coupons was determined by plate culture and the coefficient of variation (CV%) calculated. The DNA, glycoconjugates and protein content of the biofilm were determined by analysing biofilm stained with SYTO 60, Alexa-488-labelled Aleuria aurantia lectin and SyproOrange respectively using Image J and Imaris software. Biofilm architecture was analysed using live/dead staining and confocal microscopy (CM) and scanning electron microscopy (SEM). Model biofilm was compared to naturally formed biofilm containing S. aureus on dry clinical surfaces. Results: The CDC Biofilm reactor reproducibly formed a multi-layered, biofilm containing about 107CFU/coupon embedded in thick extracellular polymeric substances. Within run CV was 9.5% and the between run CV was 10.1%. Protein was the principal component of both the in vitro model biofilm and the biofilms found on clinical surfaces. Continued dehydration and ageing of the model biofilm for 30days increased the % of protein, marginally decreased gylcoconjugate % but reduced extracellular DNA by 2/3. The surface of both model and clinical biofilms was rough reflecting the heterogeneous nature of biofilm formation. The average maximum thickness was 30.74±2.1μm for the in vitro biofilm model and between 24 and 47μm for the clinical biofilms examined. Conclusion: The laboratory developed biofilm was similar to clinical biofilms in architecture and composition. We propose that this method is suitable for evaluating the efficacy of surface cleaners and disinfectants in removing biofilm formed on dry clinical surfaces as both within run and between run variation was low, and the required equipment is easy to use, cheap and readily available.

UR - http://www.scopus.com/inward/record.url?scp=84941279285&partnerID=8YFLogxK

U2 - 10.1016/j.mimet.2015.08.003

DO - 10.1016/j.mimet.2015.08.003

M3 - Article

VL - 117

SP - 171

EP - 176

JO - Journal of Microbiological Methods

JF - Journal of Microbiological Methods

SN - 0167-7012

ER -