A new method for estimating dark matter halo masses using globular cluster systems

L. R. Spitler*, D. A. Forbes

*Corresponding author for this work

Research output: Contribution to journalLetterpeer-review

112 Citations (Scopus)


All galaxies are thought to reside within large haloes of dark matter, whose properties can only be determined from indirect observations. The formation and assembly of galaxies is determined from the interplay between these dark matter haloes and the baryonic matter they host. Although statistical relations can be used to approximate how massive a galaxy's halo is, very few individual galaxies have direct measurements of their halo masses. We present a method to directly estimate the total mass of a galaxy's dark halo using its system of globular clusters. The link between globular cluster systems and halo masses is independent of a galaxy's type and environment, in contrast to the relationship between galaxy halo and stellar masses. This trend is expected in models where globular clusters form in early, rare density peaks in the cold dark matter density field and the epoch of reionization was roughly coeval throughout the Universe. We illustrate the general utility of this relation by demonstrating that a galaxy's supermassive black hole mass and global X-ray luminosity are directly proportional to their host dark halo masses, as inferred from our new method.

Original languageEnglish
Pages (from-to)1-5
Number of pages5
JournalMonthly Notices of the Royal Astronomical Society: Letters
Issue number1
Publication statusPublished - Jan 2009
Externally publishedYes


Dive into the research topics of 'A new method for estimating dark matter halo masses using globular cluster systems'. Together they form a unique fingerprint.

Cite this