A new probabilistic seismic hazard assessment for greater Tokyo

Ross S. Stein*, Shinji Toda, Tom Parsons, Elliot Grunewald

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Tokyo and its outlying cities are home to one-quarter of Japan's 127 million people. Highly destructive earthquakes struck the capital in 1703, 1855 and 1923, the last of which took 105 000 lives. Fuelled by greater Tokyo's rich seismological record, but challenged by its magnificent complexity, our joint Japanese-US group carried out a new study of the capital's earthquake hazards. We used the prehistoric record of great earthquakes preserved by uplifted marine terraces and tsunami deposits (17 M∼8 shocks in the past 7000 years), a newly digitized dataset of historical shaking (10 000 observations in the past 400 years), the dense modern seismic network (300 000 earthquakes in the past 30 years), and Japan's GeoNet array (150 GPS vectors in the past 10 years) to reinterpret the tectonic structure, identify active faults and their slip rates and estimate their earthquake frequency. We propose that a dislodged fragment of the Pacific plate is jammed between the Pacific, Philippine Sea and Eurasian plates beneath the Kanto plain on which Tokyo sits. We suggest that the Kanto fragment controls much of Tokyo's seismic behaviour for large earthquakes, including the damaging 1855 M∼7.3 Ansei-Edo shock. On the basis of the frequency of earthquakes beneath greater Tokyo, events with magnitude and location similar to the M∼ 7.3 Ansei-Edo event have a ca 20% likelihood in an average 30 year period. In contrast, our renewal (time-dependent) probability for the great M≥ 7.9 plate boundary shocks such as struck in 1923 and 1703 is 0.5% for the next 30 years, with a time-averaged 30 year probability of ca 10%. The resulting net likelihood for severe shaking (ca 0.9g peak ground acceleration (PGA)) in Tokyo, Kawasaki and Yokohama for the next 30 years is ca 30%. The long historical record in Kanto also affords a rare opportunity to calculate the probability of shaking in an alternative manner exclusively from intensity observations. This approach permits robust estimates for the spatial distribution of expected shaking, even for sites with few observations. The resulting probability of severe shaking is ca 35% in Tokyo, Kawasaki and Yokohama and ca 10% in Chiba for an average 30 year period, in good agreement with our independent estimate, and thus bolstering our view that Tokyo's hazard looms large. Given $1 trillion estimates for the cost of an M∼7.3 shock beneath Tokyo, our probability implies a $13 billion annual probable loss.

Original languageEnglish
Pages (from-to)1965-1988
Number of pages24
JournalPhilosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume364
Issue number1845
DOIs
Publication statusPublished - 15 Aug 2006
Externally publishedYes

Fingerprint

Dive into the research topics of 'A new probabilistic seismic hazard assessment for greater Tokyo'. Together they form a unique fingerprint.

Cite this