TY - JOUR
T1 - A novel sizing method of a standalone photovoltaic system for powering a mobile network base station using a multi-objective wind driven optimization algorithm
AU - Ibrahim, Ibrahim Anwar
AU - Sabah, Slaiman
AU - Abbas, Robert
AU - Hossian, M. J.
AU - Fahid, Hani
PY - 2021/6/15
Y1 - 2021/6/15
N2 - A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system’s components to meet the load demand for a mobile network base station at a 1% loss of load probability or less with a minimum annual total life cost. To improve the sized model’s accuracy, a long short-term memory deep learning model is utilized to forecast the hourly performance of a photovoltaic module. The long-term memory model’s performance is compared with those obtained by a linear photovoltaic model and an artificial neural network model. The comparison is carried out based on the values of normalized root mean square error, normalized mean bias error, mean absolute percentage error, and the training and testing time. Accordingly, on the values obtained for these statistical errors, the long short-term memory model outperforms better than the linear model and the artificial neural network model based. In addition, a dynamic battery model is utilized to characterize the dynamic charging and discharging process. The findings show that the optimal number of the photovoltaic array and the capacity of the storage battery required to cover the load demand of a mobile network base station are 5.4 kWp and 2640 Ah/48 V, respectively. Besides, the annual total life cycle cost for the sized photovoltaic/battery configuration is 4028.33 AUD/year. The simulation time for the proposed method is 421.25 s. To generalize the sizing results for the mobile network base stations based on Sydney weather conditions, the photovoltaic array and storage battery ratios are calculated as 0.324 and 0.223, respectively. In addition, the cost of an energy unit generated by the optimized system is 0.254 AUD/kWh. Here, the results of the proposed method have been compared with those obtained by developed and recent benchmark published methods. The comparison outcomes show the effectiveness of the proposed method in terms of providing a high availability sized system at minimum cost within less simulation time than the other considered methods.
AB - A new multi-objective wind driven optimization algorithm is proposed to size a standalone photovoltaic system’s components to meet the load demand for a mobile network base station at a 1% loss of load probability or less with a minimum annual total life cost. To improve the sized model’s accuracy, a long short-term memory deep learning model is utilized to forecast the hourly performance of a photovoltaic module. The long-term memory model’s performance is compared with those obtained by a linear photovoltaic model and an artificial neural network model. The comparison is carried out based on the values of normalized root mean square error, normalized mean bias error, mean absolute percentage error, and the training and testing time. Accordingly, on the values obtained for these statistical errors, the long short-term memory model outperforms better than the linear model and the artificial neural network model based. In addition, a dynamic battery model is utilized to characterize the dynamic charging and discharging process. The findings show that the optimal number of the photovoltaic array and the capacity of the storage battery required to cover the load demand of a mobile network base station are 5.4 kWp and 2640 Ah/48 V, respectively. Besides, the annual total life cycle cost for the sized photovoltaic/battery configuration is 4028.33 AUD/year. The simulation time for the proposed method is 421.25 s. To generalize the sizing results for the mobile network base stations based on Sydney weather conditions, the photovoltaic array and storage battery ratios are calculated as 0.324 and 0.223, respectively. In addition, the cost of an energy unit generated by the optimized system is 0.254 AUD/kWh. Here, the results of the proposed method have been compared with those obtained by developed and recent benchmark published methods. The comparison outcomes show the effectiveness of the proposed method in terms of providing a high availability sized system at minimum cost within less simulation time than the other considered methods.
KW - Photovoltaic (PV)
KW - Deep learning
KW - Standalone PV system
KW - Multi-objective optimization
KW - Mobile network base station
UR - http://www.scopus.com/inward/record.url?scp=85107652405&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2021.114179
DO - 10.1016/j.enconman.2021.114179
M3 - Article
AN - SCOPUS:85107652405
SN - 0196-8904
VL - 238
SP - 1
EP - 18
JO - Energy Conversion and Management
JF - Energy Conversion and Management
M1 - 114179
ER -