A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease

Nicholas J. Ashton, Alejo J. Nevado-Holgado, Imelda S. Barber, Steven Lynham, Veer Gupta, Pratishtha Chatterjee, Kathryn Goozee, Eugene Hone, Steve Pedrini, Kaj Blennow, Michael Schöll, Henrik Zetterberg, Kathryn A. Ellis, Ashley I. Bush, Christopher C. Rowe, Victor L. Villemagne, David Ames, Colin L. Masters, Dag Aarsland, John PowellSimon Lovestone, Ralph Martins, Abdul Hye*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    57 Citations (Scopus)
    50 Downloads (Pure)

    Abstract

    A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer’s disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.

    Original languageEnglish
    Article numbereaau7220
    Pages (from-to)1-12
    Number of pages12
    JournalScience Advances
    Volume5
    Issue number2
    DOIs
    Publication statusPublished - 6 Feb 2019

    Bibliographical note

    Copyright the Author(s) 2019. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

    Fingerprint

    Dive into the research topics of 'A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer’s disease'. Together they form a unique fingerprint.

    Cite this