Abstract
Many biological processes in the body are regulated by synchronized activity between two cell types. Recent advances in cell μcontact printing have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. However, these techniques are still complicated to perform and are seldom used by biologists. We report here development of a novel microfluidic stamping device for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell spatial interactions. To demonstrate the stamp's capabilities, we developed an in-vitro model of endothelial and cardiac mesenchymal stem cell interactions, which are thought to regulate coronary repair after myocardial injury.
Original language | English |
---|---|
Title of host publication | 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016 |
Publisher | Chemical and Biological Microsystems Society |
Pages | 1069-1070 |
Number of pages | 2 |
ISBN (Electronic) | 9780979806490 |
Publication status | Published - 2016 |
Event | 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016 - Dublin, Ireland Duration: 9 Oct 2016 → 13 Oct 2016 |
Other
Other | 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016 |
---|---|
Country/Territory | Ireland |
City | Dublin |
Period | 9/10/16 → 13/10/16 |
Keywords
- Co-culture
- Collective cell migration
- Microfluidics
- Stem cells