TY - JOUR
T1 - A search for OH 6 GHz maser emission towards supernova remnants
AU - McDonnell, Korinne E.
AU - Wardle, Mark
AU - Vaughan, Alan E.
PY - 2008/10
Y1 - 2008/10
N2 - OH masers at 1720 MHz have proven to be excellent indicators of interactions between supernova remnants and molecular clouds. OH-excitation calculations suggest that the 6049-MHz OH-maser line is excited for higher column densities than for the 1720-MHz line. Previous observations and modelling of 1612-, 1665- and 1667-MHz OH absorption and 1720-MHz OH masers indicated that the column densities in some supernova remnants, ∼1017 cm-2, may be high enough for 6049-MHz OH masers to exist. It is therefore a potentially valuable indicator of remnant-cloud interaction. We present excitation calculations predicting the formation of 6049-MHz OH masers and results of a survey, using the Parkes Methanol Multibeam receiver for 6049-, 6035- and 6030-MHz OH masers toward 35 supernova remnants, a star-forming region and four fields in the Large and Small Magellanic Clouds. Two new sites of 6035- and 6030-MHz OH-maser emission associated with star-forming regions have been discovered, but no 6049-MHz masers were detected to a brightness temperature limit of ∼0.3-0.6 K, even though modelling of the OH excitation suggests that maser emission should have been detected. Our upper limits indicate the OH column density for a typical remnant ≲1016.4 cm-2, which conflicts with observed and modelled column densities. One possible explanation is that 6049-MHz OH masers may be more sensitive to velocity coherence than 1720-MHz OH masers under some conditions.
AB - OH masers at 1720 MHz have proven to be excellent indicators of interactions between supernova remnants and molecular clouds. OH-excitation calculations suggest that the 6049-MHz OH-maser line is excited for higher column densities than for the 1720-MHz line. Previous observations and modelling of 1612-, 1665- and 1667-MHz OH absorption and 1720-MHz OH masers indicated that the column densities in some supernova remnants, ∼1017 cm-2, may be high enough for 6049-MHz OH masers to exist. It is therefore a potentially valuable indicator of remnant-cloud interaction. We present excitation calculations predicting the formation of 6049-MHz OH masers and results of a survey, using the Parkes Methanol Multibeam receiver for 6049-, 6035- and 6030-MHz OH masers toward 35 supernova remnants, a star-forming region and four fields in the Large and Small Magellanic Clouds. Two new sites of 6035- and 6030-MHz OH-maser emission associated with star-forming regions have been discovered, but no 6049-MHz masers were detected to a brightness temperature limit of ∼0.3-0.6 K, even though modelling of the OH excitation suggests that maser emission should have been detected. Our upper limits indicate the OH column density for a typical remnant ≲1016.4 cm-2, which conflicts with observed and modelled column densities. One possible explanation is that 6049-MHz OH masers may be more sensitive to velocity coherence than 1720-MHz OH masers under some conditions.
KW - masers
KW - stars: formation
KW - supernova remnants
KW - radio lines: ISM
UR - http://www.scopus.com/inward/record.url?scp=52949122840&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2966.2008.13728.x
DO - 10.1111/j.1365-2966.2008.13728.x
M3 - Article
AN - SCOPUS:52949122840
SN - 0035-8711
VL - 390
SP - 49
EP - 58
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 1
ER -