Abstract
The study seeks to describe one method of deriving information about local daily temperature extremes from larger scale atmospheric flow patterns using statistical tools. This is considered to be one step towards downscaling coarsely gridded climate data from global climate models (GCMs) to finer spatial scales. Downscaling is necessary in order to bridge the spatial mismatch between GCMs and climate impact models which need information on spatial scales that the GCMs cannot provide. The method of statistical downscaling is based on physical interaction between atmospheric processes with different spatial scales, in this case between synoptic scale mean sea level pressure (MSLP) fields and local temperature extremes at several stations in southeast Australia. In this study it was found that most of the day-to-day spatial variability of the synoptic circulation over the Australian region can be captured by six principal components. Using the scores of these PCs as multivariate indicators of the circulation a substantial part of the local daily temperature variability could be explained. The inclusion of temperature persistence noticeably improved the performance of the statistical model. The model established and tested with observations is thought to be finally applied to GCM-simulated pressure fields in order to estimate pressure-related changes in local temperature extremes under altered CO2 conditions.
Original language | English |
---|---|
Pages (from-to) | 223-234 |
Number of pages | 12 |
Journal | Climate Dynamics |
Volume | 13 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 1997 |
Keywords
- statistical downscaling
- Australian region
- atmospheric circulation pattern
- spatial mismatch
- temperature persistence