A survey of federated evaluation in federated learning

Behnaz Soltani, Yipeng Zhou*, Venus Haghighi, John C. S. Lui

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contributionpeer-review

8 Citations (Scopus)

Abstract

In traditional machine learning, it is trivial to conduct model evaluation since all data samples are managed centrally by a server. However, model evaluation becomes a challenging problem in federated learning (FL), which is called federated evaluation in this work. This is because clients do not expose their original data to preserve data privacy. Federated evaluation plays a vital role in client selection, incentive mechanism design, malicious attack detection, etc. In this paper, we provide the first comprehensive survey of existing federated evaluation methods. Moreover, we explore various applications of federated evaluation for enhancing FL performance and finally present future research directions by envisioning some challenges.

Original languageEnglish
Title of host publicationProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
EditorsEdith Elkind
Place of PublicationCalifornia
PublisherInternational Joint Conferences on Artificial Intelligence
Pages6769-6777
Number of pages9
ISBN (Electronic)9781956792034
DOIs
Publication statusPublished - 2023
Event32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 - Macao, China
Duration: 19 Aug 202325 Aug 2023

Conference

Conference32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
Country/TerritoryChina
CityMacao
Period19/08/2325/08/23

Fingerprint

Dive into the research topics of 'A survey of federated evaluation in federated learning'. Together they form a unique fingerprint.

Cite this