TY - JOUR
T1 - A time-dependent two electron group model for a discharge excited he-sr recombination laser
AU - Carman, R. J.
PY - 1991/10/14
Y1 - 1991/10/14
N2 - A time-dependent two electron group model 2EGM, based on a biMaxwellian electron energy distribution function (eedf), has been developed to simulate the discharge kinetics in a high-current, high-repetition frequency, pulsed He-Sr recombination laser. A comparison is made between the results predicted by 2EGM and 1EGM (Maxwellian) simulations and experimental data corresponding to typical operating conditions of the laser. Results from the 2EGM indicate that during the current pulse, the high-energy tail region of the eedf is severely depleted due to both inelastic collisions between electrons and ground state helium atoms and incomplete thermalization via Coulomb collisions. This leads to a highly non-Maxwellian eedf, a feature which cannot be accommodated in the 1EGM simulation. In addition, the Het(23S), Sr, and Sr+ population densities predicted by the 2EGM are shown to be in close agreement with the experimental data, whereas the 1 EGM predicts a partitioning of energy between helium and strontium states which is inconsistent with the observed population densities.
AB - A time-dependent two electron group model 2EGM, based on a biMaxwellian electron energy distribution function (eedf), has been developed to simulate the discharge kinetics in a high-current, high-repetition frequency, pulsed He-Sr recombination laser. A comparison is made between the results predicted by 2EGM and 1EGM (Maxwellian) simulations and experimental data corresponding to typical operating conditions of the laser. Results from the 2EGM indicate that during the current pulse, the high-energy tail region of the eedf is severely depleted due to both inelastic collisions between electrons and ground state helium atoms and incomplete thermalization via Coulomb collisions. This leads to a highly non-Maxwellian eedf, a feature which cannot be accommodated in the 1EGM simulation. In addition, the Het(23S), Sr, and Sr+ population densities predicted by the 2EGM are shown to be in close agreement with the experimental data, whereas the 1 EGM predicts a partitioning of energy between helium and strontium states which is inconsistent with the observed population densities.
UR - http://www.scopus.com/inward/record.url?scp=0026237591&partnerID=8YFLogxK
U2 - 10.1088/0022-3727/24/10/014
DO - 10.1088/0022-3727/24/10/014
M3 - Article
VL - 24
SP - 1803
EP - 1810
JO - Journal of Physics D: Applied Physics
JF - Journal of Physics D: Applied Physics
SN - 0022-3727
IS - 10
ER -