A unified framework for cross-domain and cross-system recommendations

Feng Zhu, Yan Wang, Jun Zhou, Chaochao Chen*, Longfei Li, Guanfeng Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Cross-Domain Recommendation (CDR) and Cross-System Recommendation (CSR) have been proposed to improve the recommendation accuracy in a target dataset (domain/system) with the help of a source one with relatively richer information. However, most existing CDR and CSR approaches are single-target, namely, there is a single target dataset, which can only help the target dataset and thus cannot benefit the source dataset. In this paper, we focus on three new scenarios, i.e., Dual-Target CDR (DTCDR), Multi-Target CDR (MTCDR), and CDR+CSR, and aim to improve the recommendation accuracy in all datasets simultaneously for all scenarios. To do this, we propose a unified framework, called GA (based on Graph embedding and Attention techniques), for all three scenarios. In GA, we first construct separate heterogeneous graphs to generate more representative user and item embeddings. Then, we propose an element-wise attention mechanism to effectively combine the embeddings of common entities (users/items) learned from different datasets. Moreover, to avoid negative transfer, we further propose a Personalized training strategy to minimize the embedding difference of common entities between a richer dataset and a sparser dataset, deriving three new models, i.e., GA-DTCDR-P, GA-MTCDR-P, and GA-CDR+CSR-P, for the three scenarios respectively. Extensive experiments conducted on four real-world datasets demonstrate that our proposed GA models significantly outperform the state-of-the-art approaches.

Original languageEnglish
Pages (from-to)1171-1184
Number of pages14
JournalIEEE Transactions on Knowledge and Data Engineering
Issue number2
Early online date16 Aug 2021
Publication statusPublished - Feb 2023


Dive into the research topics of 'A unified framework for cross-domain and cross-system recommendations'. Together they form a unique fingerprint.

Cite this