Abstract
The itemsets discovered by traditional High Utility Itemsets Mining (HUIM) methods are more useful than frequent itemset mining outcomes; however, they are usually disordered and not actionable, and sometime accidental, because the utility is the only judgement and no relations among itemsets are considered. In this paper, we introduce the concept of combined mining to select combined itemsets that are not only high utility and high frequency, but also involving relations between itemsets. An effective method for mining such actionable combined high utility itemsets is proposed. The experimental results are promising, compared to those from traditional HUIM algorithm (UP-Growth).
Original language | English |
---|---|
Pages (from-to) | 4206-4207 |
Number of pages | 2 |
Journal | Proceedings of the AAAI Conference on Artificial Intelligence |
Volume | 29 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2015 |
Externally published | Yes |
Event | 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States Duration: 25 Jan 2015 → 30 Jan 2015 |