Abstract
Most of current network representation models are learned in unsupervised fashions, which usually lack the capability of discrimination when applied to network analysis tasks, such as node classification. It is worth noting that label information is valuable for learning the discriminative network representations. However, labels of all training nodes are always difficult or expensive to obtain and manually labeling all nodes for training is inapplicable. Different sets of labeled nodes for model learning lead to different network representation results. In this paper, we propose a novel method, termed as ANRMAB, to learn the active discriminative network representations with a multi-armed bandit mechanism in active learning setting. Specifically, based on the networking data and the learned network representations, we design three active learning query strategies. By deriving an effective reward scheme that is closely related to the estimated performance measure of interest, ANRMAB uses a multi-armed bandit mechanism for adaptive decision making to select the most informative nodes for labeling. The updated labeled nodes are then used for further discriminative network representation learning. Experiments are conducted on three public data sets to verify the effectiveness of ANRMAB.
Original language | English |
---|---|
Title of host publication | Proceedings of the 27th International Joint Conference on Artificial Intelligence |
Editors | Jérôme Lang |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 2142-2148 |
Number of pages | 7 |
ISBN (Electronic) | 9780999241127 |
DOIs | |
Publication status | Published - 2018 |
Event | 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence, IJCAI-ECAI 2018 - Stockholm, Sweden Duration: 13 Jul 2018 → 19 Jul 2018 |
Conference
Conference | 27th International Joint Conference on Artificial Intelligence and the 23rd European Conference on Artificial Intelligence, IJCAI-ECAI 2018 |
---|---|
Country/Territory | Sweden |
City | Stockholm |
Period | 13/07/18 → 19/07/18 |