TY - JOUR
T1 - Adaptation mechanisms of soil microbial community to stoichiometric imbalances caused by forest conversion
AU - Luo, Xianzhen
AU - Zhang, Lingling
AU - Li, Zhi
AU - Zhang, Rui
AU - Le Roux, Johannes J.
AU - Reynolds, Jason K.
AU - Yu, Hanxia
AU - Chen, Minghao
AU - Zheng, Yahong
AU - Hou, Enqing
AU - Wen, Dazhi
PY - 2024/9
Y1 - 2024/9
N2 - Stoichiometric imbalances between soil resource availability and soil microbial biomass cause nutrient limitation for microbial activity, ultimately affecting soil carbon (C), nitrogen (N), and phosphorus (P) cycling. Little is known about how land use change, such as the conversion of primary natural broadleaf forests (BF) to monoculture plantations (PF) and regenerated secondary forests (SF), impacts stoichiometric imbalances and soil microbial communities. We measured soil available nutrients, microbial biomass, and potential activities of C-, N- and P-acquiring enzymes, and investigated the diversity and structure of soil microbial communities in BF, SF, and PF in subtropics. Forest conversion of BF to PF, but not to SF, increased dissolved organic carbon (DOC): available nitrogen (AN) ratio and slightly decreased microbial biomass C:P and N:P ratios, resulting in increasing C:P and N:P imbalances between soil resource availability and soil microbes. We found microbial communities to maintain stoichiometric homeostasis by increasing the threshold elements ratio of C:N (TERC:N) and altering the stoichiometry of C-, N-, and P-acquiring enzymes in order to store scarce nutrients such as P. Higher stoichiometric imbalances of C:P and N:P in PF soils were associated with the decreases in fungal richness, α-diversity and bacterial β-diversity. Bacterial communities shifted from copiotrophs (Actinobacteria) to oligotrophs (Chloroflexi and Verrucomicrobia) with the conversion of BF to PF. This study suggests that the response of soil available nutrients (especially soil P) and soil microbial biomass to forest conversion, and associated changes in stoichiometric imbalances substantially regulate soil microbial community structure and enzyme activities with forest conversion.
AB - Stoichiometric imbalances between soil resource availability and soil microbial biomass cause nutrient limitation for microbial activity, ultimately affecting soil carbon (C), nitrogen (N), and phosphorus (P) cycling. Little is known about how land use change, such as the conversion of primary natural broadleaf forests (BF) to monoculture plantations (PF) and regenerated secondary forests (SF), impacts stoichiometric imbalances and soil microbial communities. We measured soil available nutrients, microbial biomass, and potential activities of C-, N- and P-acquiring enzymes, and investigated the diversity and structure of soil microbial communities in BF, SF, and PF in subtropics. Forest conversion of BF to PF, but not to SF, increased dissolved organic carbon (DOC): available nitrogen (AN) ratio and slightly decreased microbial biomass C:P and N:P ratios, resulting in increasing C:P and N:P imbalances between soil resource availability and soil microbes. We found microbial communities to maintain stoichiometric homeostasis by increasing the threshold elements ratio of C:N (TERC:N) and altering the stoichiometry of C-, N-, and P-acquiring enzymes in order to store scarce nutrients such as P. Higher stoichiometric imbalances of C:P and N:P in PF soils were associated with the decreases in fungal richness, α-diversity and bacterial β-diversity. Bacterial communities shifted from copiotrophs (Actinobacteria) to oligotrophs (Chloroflexi and Verrucomicrobia) with the conversion of BF to PF. This study suggests that the response of soil available nutrients (especially soil P) and soil microbial biomass to forest conversion, and associated changes in stoichiometric imbalances substantially regulate soil microbial community structure and enzyme activities with forest conversion.
KW - Enzymatic stoichiometry
KW - Forest conversion
KW - Microbial nutrient limitation
KW - Soil nutrient limitation
KW - Stoichiometric imbalance
UR - http://www.scopus.com/inward/record.url?scp=85198519389&partnerID=8YFLogxK
U2 - 10.1016/j.apsoil.2024.105529
DO - 10.1016/j.apsoil.2024.105529
M3 - Article
AN - SCOPUS:85198519389
SN - 0929-1393
VL - 201
SP - 1
EP - 12
JO - Applied Soil Ecology
JF - Applied Soil Ecology
M1 - 105529
ER -