TY - JOUR
T1 - Adaptation of multilocus sequencing for studying variation within a major clone
T2 - evolutionary relationships of Salmonella enterica serovar typhimurium
AU - Hu, Honghua
AU - Lan, Ruiting
AU - Reeves, Peter R.
PY - 2006/2
Y1 - 2006/2
N2 - Serovar Typhimurium of Salmonella enterica is a model organism for studies of pathogenesis that exhibits phage-type variation and variation in host range and virulence, but in a recent study showed no sequence variation in four genes, indicating the clonal nature of this serovar. We determined the relationships of 46 Typhimurium isolates of nine phage types using mutational changes detected either by matching AFLP (amplified fragment length polymorphism) fragments to computer-modeled LT2 AFLP fragments or by sequencing intergenic regions. Fifty-one polymorphic sites were detected, which gave a single phylogenetic tree. Comparison with genome sequences of five other serovars, Typhi, Paratyphi A, Gallinarum, Enteritidis, and Pullorum, enabled determination of the root of the tree. Only two parallel events were observed, giving high confidence in the tree branching order. The mutation-based tree provided a high level of consistency and a clear lineage for the Typhimurium isolates studied. This enabled us to show that for seven of the nine phage types used, the isolates studied have a single origin, but that two phage types clearly have more than one independent origin. We found that sequencing intergenic regions provides a good strategy for detection of mutational polymorphisms and study of phylogenetic relationships of closely related isolates and would be applicable to many other species.
AB - Serovar Typhimurium of Salmonella enterica is a model organism for studies of pathogenesis that exhibits phage-type variation and variation in host range and virulence, but in a recent study showed no sequence variation in four genes, indicating the clonal nature of this serovar. We determined the relationships of 46 Typhimurium isolates of nine phage types using mutational changes detected either by matching AFLP (amplified fragment length polymorphism) fragments to computer-modeled LT2 AFLP fragments or by sequencing intergenic regions. Fifty-one polymorphic sites were detected, which gave a single phylogenetic tree. Comparison with genome sequences of five other serovars, Typhi, Paratyphi A, Gallinarum, Enteritidis, and Pullorum, enabled determination of the root of the tree. Only two parallel events were observed, giving high confidence in the tree branching order. The mutation-based tree provided a high level of consistency and a clear lineage for the Typhimurium isolates studied. This enabled us to show that for seven of the nine phage types used, the isolates studied have a single origin, but that two phage types clearly have more than one independent origin. We found that sequencing intergenic regions provides a good strategy for detection of mutational polymorphisms and study of phylogenetic relationships of closely related isolates and would be applicable to many other species.
UR - http://www.scopus.com/inward/record.url?scp=33644751750&partnerID=8YFLogxK
U2 - 10.1534/genetics.105.046466
DO - 10.1534/genetics.105.046466
M3 - Article
C2 - 16204219
AN - SCOPUS:33644751750
SN - 0016-6731
VL - 172
SP - 743
EP - 750
JO - Genetics
JF - Genetics
IS - 2
ER -