AdaptRDF: adaptive storage management for RDF databases

Hooran MahmoudiNasab, Sherif Sakr

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Purpose - The purpose of this paper is to present a two-phase approach for designing an efficient tailored but flexible storage solution for resource description framework (RDF) data based on its query workload characteristics. Design/methodology/approach - The approach consists of two phases. The vertical partitioning phase which aims of reducing the number of join operations in the query evaluation process, while the adjustment phase aims to maintain the efficiency of the performance of the query processing by adapting the underlying schema to cope with the dynamic nature of the query workloads. Findings - The authors perform comprehensive experiments on two real-world RDF datasets to demonstrate that the approach is superior to the state-of-the-art techniques in this domain. Originality/value - The main motivation behind the authors' approach is that several benchmarking studies have recently shown that each RDF dataset requires a tailored table schema in order to achieve efficient performance during query processing. None of the previous approaches have considered this limitation.
Original languageEnglish
Pages (from-to)234-250
Number of pages17
JournalInternational Journal of Web Information Systems
Volume8
Issue number2
DOIs
Publication statusPublished - 2012

Keywords

  • Data management
  • Query languages
  • Query processing
  • Resource description framework
  • SPARQL

Fingerprint

Dive into the research topics of 'AdaptRDF: adaptive storage management for RDF databases'. Together they form a unique fingerprint.

Cite this