Abstract
Introduction: This review evaluates the role of Artificial Intelligence (AI) in transforming diagnostic imaging in healthcare. AI has the potential to enhance accuracy and efficiency of interpreting medical images like X-rays, MRIs, and CT scans.
Methods: A comprehensive literature search across databases like PubMed, Embase, and Google Scholar was conducted, focusing on articles published in peer-reviewed journals in English language since 2019. Inclusion criteria targeted studies on AI's application in diagnostic imaging, while exclusion criteria filtered out irrelevant or empirically unsupported studies.
Results and discussion: Through 30 included studies, the review identifies four AI domains and eight functions in diagnostic imaging: 1) In the area of Image Analysis and Interpretation, AI capabilities enhanced image analysis, spotting minor discrepancies and anomalies, and by reducing human error, maintaining accuracy and mitigating the impact of fatigue or oversight, 2) The Operational Efficiency is enhanced by AI through efficiency and speed, which accelerates the diagnostic process, and cost-effectiveness, reducing healthcare costs by improving efficiency and accuracy, 3) Predictive and Personalised Healthcare benefit from AI through predictive analytics, leveraging historical data for early diagnosis, and personalised medicine, which employs patient-specific data for tailored diagnostic approaches, 4) Lastly, in Clinical Decision Support, AI assists in complex procedures by providing precise imaging support and integrates with other technologies like electronic health records for enriched health insights, showcasing AI's transformative potential in diagnostic imaging. The review also discusses challenges in AI integration, such as ethical concerns, data privacy, and the need for technology investments and training.
Conclusion: AI is revolutionising diagnostic imaging by improving accuracy, efficiency, and personalised healthcare delivery. Recommendations include continued investment in AI, establishment of ethical guidelines, training for healthcare professionals, and ensuring patient-centred AI development. The review calls for collaborative efforts to integrate AI in clinical practice effectively and address healthcare disparities.
Methods: A comprehensive literature search across databases like PubMed, Embase, and Google Scholar was conducted, focusing on articles published in peer-reviewed journals in English language since 2019. Inclusion criteria targeted studies on AI's application in diagnostic imaging, while exclusion criteria filtered out irrelevant or empirically unsupported studies.
Results and discussion: Through 30 included studies, the review identifies four AI domains and eight functions in diagnostic imaging: 1) In the area of Image Analysis and Interpretation, AI capabilities enhanced image analysis, spotting minor discrepancies and anomalies, and by reducing human error, maintaining accuracy and mitigating the impact of fatigue or oversight, 2) The Operational Efficiency is enhanced by AI through efficiency and speed, which accelerates the diagnostic process, and cost-effectiveness, reducing healthcare costs by improving efficiency and accuracy, 3) Predictive and Personalised Healthcare benefit from AI through predictive analytics, leveraging historical data for early diagnosis, and personalised medicine, which employs patient-specific data for tailored diagnostic approaches, 4) Lastly, in Clinical Decision Support, AI assists in complex procedures by providing precise imaging support and integrates with other technologies like electronic health records for enriched health insights, showcasing AI's transformative potential in diagnostic imaging. The review also discusses challenges in AI integration, such as ethical concerns, data privacy, and the need for technology investments and training.
Conclusion: AI is revolutionising diagnostic imaging by improving accuracy, efficiency, and personalised healthcare delivery. Recommendations include continued investment in AI, establishment of ethical guidelines, training for healthcare professionals, and ensuring patient-centred AI development. The review calls for collaborative efforts to integrate AI in clinical practice effectively and address healthcare disparities.
Original language | English |
---|---|
Article number | 100146 |
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Computer Methods and Programs in Biomedicine Update |
Volume | 5 |
DOIs | |
Publication status | Published - 16 Mar 2024 |
Bibliographical note
Copyright the Author(s) 2024. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- Artificial Intelligence
- Diagnostic imaging
- Health analytics
- Healthcare
- Machine learning
- Medical imaging
- Personalised medicine