Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile

Fernando Barra*, Fernando Gervilla, Elkin Hernández, Martin Reich, José Alberto Padrón-Navarta, José Maria González-Jiménez

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

41 Citations (Scopus)


La Cabaña peridotite is part of a dismembered ophiolite complex located within the metamorphic basement of the Coastal Cordillera of south-central Chile, and is the only location in Chile were Cr-spinels have been described so far. The La Cabaña peridotite is part of the Western Series unit, which comprises meta-sedimentary rocks, metabasites, and serpentinized ultramafic rocks. This unit has been affected by greenschist-facies metamorphism with reported peak PT conditions of 7.0–9.3 kbar and 380°–420 °C. Within La Cabaña peridotite Cr-spinels are present in two localities: Lavanderos and Centinela Bajo. In Lavanderos, Cr-spinel occurs in small chromitite pods and as accessory/disseminated grains with a porous or spongy texture in serpentinite, whereas in Centinela Bajo Cr-spinel is present as accessory zoned grains in partly serpentinized dunites, and in chromitite blocks. All Cr-spinels display variable degrees of alteration to Fe2+-rich chromite with a variation trend of major elements from chromite to Fe2+-rich chromite similar to those observed in other locations, i.e., an increase in Fe2O3 and FeO, a decrease in Al2O3 and MgO. Cr2O3 content increases from chromite to Fe2+-rich chromite in chromitite pods from Lavanderos and chromitite blocks from Centinela Bajo, but decreases in ferrian chromite zones in accessory grains from Centinela Bajo. The minor element (Ti, V, Zn, Ni) content is mostly low and does not exceed 0.4 wt.%, with the exception of MnO (<0.9 wt.%), which shows a correspondence with increasing degree of alteration. Cr# (Cr/Cr + Al) versus Mg# (Mg/Mg + Fe2+) and Fe3+/Fe3++Fe2+ versus Mg# plots are used to illustrate the Cr-spinel alteration process. Overall, the Cr-spinels from Lavanderos (chromitite pods and disseminated grains) exhibit Cr# values ranging from 0.6 to 1.0, Mg# (Mg/Mg + Fe2+) below 0.5, and (Fe3+/Fe3++Fe2+) <0.4. Cr-spinels from chromitites in Centinela Bajo have Cr# and Mg# values that range from 0.65 to 1.0, and 0.7-0.3, respectively, and (Fe3+/Fe3++Fe2+) < 0.4. Accessory Cr-spinels from Centinela Bajo have Cr# and Mg# values that range from 0.55 to 1.0, and 0.6- < 0.1, respectively. The (Fe3+/Fe3++Fe2+) ratio is less than 0.4 in chromite cores and Fe2+-rich chromite, and >0.5 in ferrian chromite and Cr-magnetite. Interpretation of the data obtained and Cr-spinel textures indicate that the alteration of Cr-spinel is a progressive process that involves in its initial stages the reaction of chromite with olivine under water-saturated conditions to produce clinochlore and Fe2+-rich chromite. During this stage the chromite can also incorporate Ni, Mn, and/or Zn from the serpentinization fluids. As alteration progresses, Fe2+-rich chromite loses mass resulting in the development of a spongy texture. In a later stage and under more oxidizing conditions Fe3+ is incorporated in chromite/Fe2+-rich chromite shifting its composition to an Fe3+-rich chromite (i.e., ferrian chromite). Depending on the fluid/rock and Cr-spinel/silicate ratios, Cr-magnetite can also form over Fe2+-rich chromite and/or ferrian chromite as a secondary overgrowth. The compositional changes observed in Cr-spinels from La Cabaña reflect the initial stages of alteration under serpentinization conditions. Results from this study show that the alteration of Cr-spinels is dependent on temperature. The degree and extent of alteration (formation of Fe2+-rich and/or ferrian chromite) are controlled by the redox nature of the fluids, the Cr-spinel/silicate and the fluid/rock ratios.

Original languageEnglish
Pages (from-to)819-836
Number of pages18
JournalMineralogy and Petrology
Issue number6
Publication statusPublished - Dec 2014
Externally publishedYes


Dive into the research topics of 'Alteration patterns of chromian spinels from La Cabaña peridotite, south-central Chile'. Together they form a unique fingerprint.

Cite this