An ATCA radio-continuum study of the small magellanic cloud - IV. A multifrequency analysis of the N 66 region

W. A. Reid*, J. L. Payne, M. D. Filipović, C. W. Danforth, P. A. Jones, G. L. White, L. Staveley-Smith

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)


Traditional identification of supernova remnants (SNRs) include the use of radio spectral index, optical spectral studies (including strong [S II], [N II], [O I], [O II] and [O III] lines) and X-ray co-identifications. Each of these can have significant limitations within the context of a particular SNR candidate and new identification methods are continually sought. In this paper, we explore subtraction techniques by Ye, Turtle and Kennicutt to remove thermal emission estimated from Ha flux from radio-continuum images. The remaining non-thermal emission allows the identification of SNRs embedded within these H II regions. Subtraction images of the N 66 region in the Small Magellanic Cloud (SMC) using Ha wide-field optical CCD images from the Curtis Schmidt Telescope and the recent Australia Telescope Compact Array (ATCA)/Parkes radio-continuum (1420, 2370, 4800 and 8640 MHz) data are presented as an example. These show three SNRs (B0057 - 724, B0056 - 724 and B0056 - 725) separated from their surrounding H II radio emission. 2.3-m dual-beam spectrograph long-slit spectra from selected regions within N 66 suggest the presence of an additional SNR with no radio or X-ray emission. Radio spectral index, [S II]/Hα ratio and archived Chandra images of N 66 combine to give a more coherent picture of this region, confirming B0057 - 724 as an SNR. The N 66 nebula complex is divided into 10 components, composed separately of these SNRs and H II regions.

Original languageEnglish
Pages (from-to)1379-1393
Number of pages15
JournalMonthly Notices of the Royal Astronomical Society
Issue number4
Publication statusPublished - Apr 2006


Dive into the research topics of 'An ATCA radio-continuum study of the small magellanic cloud - IV. A multifrequency analysis of the N 66 region'. Together they form a unique fingerprint.

Cite this