Abstract
Let L=-δ+V be a Schrödinger operator on R n where V is a nonnegative functionon in the space L 1loc(R n) of locally integrable functions on R n. In this paper we provide an atomic decomposition for the Hardy space H 1L(R n) associated to L in terms of the maximal function characterization. We then adapt our argument to give an atomic decomposition for the Hardy space H 1L(R n×R n) on product domains.
Original language | English |
---|---|
Pages (from-to) | 125-144 |
Number of pages | 20 |
Journal | Journal of the Australian Mathematical Society |
Volume | 91 |
Issue number | 1 |
DOIs | |
Publication status | Published - Aug 2011 |
Keywords
- atom
- nontangential maximal function
- phrases Hardy space
- product spaces
- Schrödinger operator