TY - JOUR
T1 - An engagement model based on user interest and QoS in video streaming systems
AU - Tan, Xiaoying
AU - Guo, Yuchun
AU - Orgun, Mehmet A.
AU - Xue, Liyin
AU - Chen, Yishuai
N1 - Copyright the Author(s) 2018. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - With the surging demand on high-quality mobile video services and the unabated development of new network technology, including fog computing, there is a need for a generalized quality of user experience (QoE) model that could provide insight for various network optimization designs. A good QoE, especially when measured as engagement, is an important optimization goal for investors and advertisers. Therefore, many works have focused on understanding how the factors, especially quality of service (QoS) factors, impact user engagement. However, the divergence of user interest is usually ignored or deliberatively decoupled from QoS and/or other objective factors. With an increasing trend towards personalization applications, it is necessary as well as feasible to consider user interest to satisfy aesthetic and personal needs of users when optimizing user engagement. We first propose an Extraction-Inference (E-I) algorithm to estimate the user interest from easily obtained user behaviors. Based on our empirical analysis on a large-scale dataset, we then build a QoS and user Interest based Engagement (QI-E) regression model. Through experiments on our dataset, we demonstrate that the proposed model reaches an improvement in accuracy by 9.99% over the baseline model which only considers QoS factors. The proposed model has potential for designing QoE-oriented scheduling strategies in various network scenarios, especially in the fog computing context.
AB - With the surging demand on high-quality mobile video services and the unabated development of new network technology, including fog computing, there is a need for a generalized quality of user experience (QoE) model that could provide insight for various network optimization designs. A good QoE, especially when measured as engagement, is an important optimization goal for investors and advertisers. Therefore, many works have focused on understanding how the factors, especially quality of service (QoS) factors, impact user engagement. However, the divergence of user interest is usually ignored or deliberatively decoupled from QoS and/or other objective factors. With an increasing trend towards personalization applications, it is necessary as well as feasible to consider user interest to satisfy aesthetic and personal needs of users when optimizing user engagement. We first propose an Extraction-Inference (E-I) algorithm to estimate the user interest from easily obtained user behaviors. Based on our empirical analysis on a large-scale dataset, we then build a QoS and user Interest based Engagement (QI-E) regression model. Through experiments on our dataset, we demonstrate that the proposed model reaches an improvement in accuracy by 9.99% over the baseline model which only considers QoS factors. The proposed model has potential for designing QoE-oriented scheduling strategies in various network scenarios, especially in the fog computing context.
UR - http://www.scopus.com/inward/record.url?scp=85056541800&partnerID=8YFLogxK
U2 - 10.1155/2018/1398958
DO - 10.1155/2018/1398958
M3 - Article
AN - SCOPUS:85056541800
SN - 1530-8669
VL - 2018
SP - 1
EP - 11
JO - Wireless Communications and Mobile Computing
JF - Wireless Communications and Mobile Computing
M1 - 1398958
ER -