An enzyme-encapsulated MOF@MOF nanocomposite for detecting H2O2 derived from superoxide anion released by mitochondria of HeLa cells

Jiaqi Niu, Xiaoxin Jin, Xingqi Wang, Zhenhua Ren, Bingjie Li, Xiaoqiang Liu*, Danny K. Y. Wong*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In this work, a horseradish peroxidase (HRP)-encapsulated metal organic framework (MOF)@MOF nanocomposite is developed for detecting H2O2 converted by dismutation of superoxide anions released from live HeLa mitochondria. Initially, an HRP-polyacrylic acid cluster is incorporated on a mesoporous, peroxidase-like Cu/Co-1,4-benzenedicarboxylate (BDC) MOF platform to avoid structural change and deactivation of HRP through its interactions with MOF metal ions. Additionally, a Cu/Co-BDC(HRP)@1,3,5-benzenetricarboxyate (BTC) core-shell MOF/MOF structure, also with peroxide-like properties, serves as a protective matrix for HRP. Then, ultrathin porous carbon shells (UPCS) are adopted to improve the electrical conductivity of the MOF@MOF. The Cu/Co-BDC(HRP)@BTC|UPCS sensing platform exhibits two linear ranges of 0.05–1 µM and 1–1000 µM with a sensitivity of 172 mA mM−1 cm−2 and 1.63 mA mM−1 cm−2, respectively. A limit of detection of 0.057 µM, good selectivity and stability over 35 days for H2O2 detection are also achieved. After treating the mitochondrial complex with specific inhibitors, amperometric results at the sensing platform confirmed complex I and III within mitochondria as the main electron leakage sites in the electron transfer chains. Therefore, this sensing platform provides a tool that may aid in predicting and even developing treatments for some oxidative stress diseases caused by mitochondrial abnormalities.

Original languageEnglish
Number of pages13
JournalSmall Methods
DOIs
Publication statusE-pub ahead of print - 16 Sept 2024

Bibliographical note

Copyright the Author(s) 2024. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • enzymes
  • hydrogen peroxide converted by superoxide anion
  • metal-organic frameworks
  • mitochondrial complex

Cite this