An experimental investigation of sub-solidus assemblages formed at high pressure in high-alumina basalt, kyanite eclogite and grosspydite compositions

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase. In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in Vp would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result. The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.

LanguageEnglish
Pages84-114
Number of pages31
JournalContributions to Mineralogy and Petrology
Volume16
Issue number1
DOIs
Publication statusPublished - Mar 1967
Externally publishedYes

Fingerprint

eclogite
solidus
Aluminum Oxide
kyanite
basalt
aluminum oxide
aluminum oxides
Garnets
garnets
garnet
plagioclase
Chemical analysis
clinopyroxene
anorthosite
grossular
Quartz
granulite
pyroxene
discontinuity
quartz

Cite this

@article{b8ffefefe7064a79af968dc57af5877d,
title = "An experimental investigation of sub-solidus assemblages formed at high pressure in high-alumina basalt, kyanite eclogite and grosspydite compositions",
abstract = "The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase. In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in Vp would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result. The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.",
author = "Green, {Trevor H.}",
year = "1967",
month = "3",
doi = "10.1007/BF00371609",
language = "English",
volume = "16",
pages = "84--114",
journal = "Contributions to Mineralogy and Petrology",
issn = "0010-7999",
publisher = "Springer, Springer Nature",
number = "1",

}

TY - JOUR

T1 - An experimental investigation of sub-solidus assemblages formed at high pressure in high-alumina basalt, kyanite eclogite and grosspydite compositions

AU - Green, Trevor H.

PY - 1967/3

Y1 - 1967/3

N2 - The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase. In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in Vp would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result. The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.

AB - The sub-solidus fields of crystallization of a spectrum of synthetic aluminous basic compositions (high-alumina basalt, anorthite-enriched high-alumina basalt, kyanite eclogite, grosspydite and gabbroic anorthosite) have been investigated at pressures of up to 36 kb. At low pressures the assemblages are characterized by abundant plagioclase, clinopyroxene and possibly minor olivine and orthopyroxene. These correspond to natural gabbroic and pyroxene granulite assemblages. As pressure is increased garnet appears and increases gradually in amount at the expense of other ferromagnesian minerals and plagioclase, until finally at pressures of >23 kb at 1,100° C, plagioclase disappears and high pressure clinopyroxene+garnet+kyanite±quartz assemblages equivalent to eclogite are obtained. In the eclogite stability field, with further rise in pressure, the ratio ga/cpx and the grossular content of the garnet increase. In the high-alumina basalt composition the transitional garnet granulite assemblage (clinopyroxene+plagioclase+garnet±quartz) is spread over a pressure interval of 11 kb at 1,100° C. This is a greater interval than observed for other basalt compositions and is important in considering the hypothesis that the Mohorovicic Discontinuity is a phase change from basalt to eclogite. It indicates that the change in Vp would be spread over a significant depth range, and no sharp seismic velocity discontinuity could result. The first experimental synthesis of kyanite eclogite from both high-alumina basalt and kyanite eclogite compositions has been obtained, as well as synthesis of unusual grossular-clinopyroxene-kyanite assemblages (grosspydite) from grosspydite and gabbroic anorthosite compositions. The pressures needed to synthesize these assemblages are somewhat greater than the pressures needed to synthesize eclogite from basic compositions of lower alumina content at the same temperature. Experimental confirmation of the observation that there is a direct relation between Gross/Alm + Py ratio of garnet and the Jd/Di ratio of co-existing pyroxene in grosspydite and kyanite eclogite assemblages found in kimberlite pipes has also been obtained.

UR - http://www.scopus.com/inward/record.url?scp=0000931968&partnerID=8YFLogxK

U2 - 10.1007/BF00371609

DO - 10.1007/BF00371609

M3 - Article

VL - 16

SP - 84

EP - 114

JO - Contributions to Mineralogy and Petrology

T2 - Contributions to Mineralogy and Petrology

JF - Contributions to Mineralogy and Petrology

SN - 0010-7999

IS - 1

ER -