TY - JOUR
T1 - An overview of GNSS remote sensing
AU - Yu, Kegen
AU - Rizos, Chris
AU - Burrage, Derek
AU - Dempster, Andrew G.
AU - Zhang, Kefei
AU - Markgraf, Markus
PY - 2014
Y1 - 2014
N2 - The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.
AB - The Global Navigation Satellite System (GNSS) signals are always available, globally, and the signal structures are well known, except for those dedicated to military use. They also have some distinctive characteristics, including the use of L-band frequencies, which are particularly suited for remote sensing purposes. The idea of using GNSS signals for remote sensing - the atmosphere, oceans or Earth surface - was first proposed more than two decades ago. Since then, GNSS remote sensing has been intensively investigated in terms of proof of concept studies, signal processing methodologies, theory and algorithm development, and various satellite-borne, airborne and ground-based experiments. It has been demonstrated that GNSS remote sensing can be used as an alternative passive remote sensing technology. Space agencies such as NASA, NOAA, EUMETSAT and ESA have already funded, or will fund in the future, a number of projects/missions which focus on a variety of GNSS remote sensing applications. It is envisaged that GNSS remote sensing can be either exploited to perform remote sensing tasks on an independent basis or combined with other techniques to address more complex applications. This paper provides an overview of the state of the art of this relatively new and, in some respects, underutilised remote sensing technique. Also addressed are relevant challenging issues associated with GNSS remote sensing services and the performance enhancement of GNSS remote sensing to accurately and reliably retrieve a range of geophysical parameters.
UR - http://www.scopus.com/inward/record.url?scp=84919354599&partnerID=8YFLogxK
U2 - 10.1186/1687-6180-2014-134
DO - 10.1186/1687-6180-2014-134
M3 - Article
AN - SCOPUS:84919354599
SN - 1687-6172
VL - 2014
SP - 1
EP - 14
JO - Eurasip Journal on Advances in Signal Processing
JF - Eurasip Journal on Advances in Signal Processing
IS - 1
M1 - 134
ER -