TY - JOUR
T1 - Analysis of authentication protocols in agent-based systems using labeled tableaux
AU - Ma, Ji
AU - Orgun, Mehmet A.
AU - Sattar, Abdul
N1 - Copyright 2009 IEEE. Reprinted from IEEE Transactions on Systems, Man, and Cybernetics, Part B : Cybernetics. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Macquarie University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
PY - 2009
Y1 - 2009
N2 - The study of multiagent systems (MASs) focuses on systems in which many intelligent agents interact with each other using communication protocols. For example, an authentication protocol is used to verify and authorize agents acting on behalf of users to protect restricted data and information. After authentication, two agents should be entitled to believe that they are communicating with each other and not with intruders. For specifying and reasoning about the security properties of authentication protocols, many researchers have proposed the use of belief logics. Since authentication protocols are designed to operate in dynamic environments, it is important to model the evolution of authentication systems through time in a systematic way. We advocate the systematic combinations of logics of beliefs and time for modeling and reasoning about evolving agent beliefs in MASs. In particular, we use a temporal belief logic called TML+ for establishing trust theories for authentication systems and also propose a labeled tableau system for this logic. To illustrate the capabilities of TML+, we present trust theories for several well-known authentication protocols, namely, the Lowe modified wide-mouthed frog protocol, the amended NeedhamûSchroeder symmetric key protocol, and Kerberos. We also show how to verify certain security properties of those protocols. With the logic TML+ and its associated modal tableaux, we are able to reason about and verify authentication systems operating in dynamic environments.
AB - The study of multiagent systems (MASs) focuses on systems in which many intelligent agents interact with each other using communication protocols. For example, an authentication protocol is used to verify and authorize agents acting on behalf of users to protect restricted data and information. After authentication, two agents should be entitled to believe that they are communicating with each other and not with intruders. For specifying and reasoning about the security properties of authentication protocols, many researchers have proposed the use of belief logics. Since authentication protocols are designed to operate in dynamic environments, it is important to model the evolution of authentication systems through time in a systematic way. We advocate the systematic combinations of logics of beliefs and time for modeling and reasoning about evolving agent beliefs in MASs. In particular, we use a temporal belief logic called TML+ for establishing trust theories for authentication systems and also propose a labeled tableau system for this logic. To illustrate the capabilities of TML+, we present trust theories for several well-known authentication protocols, namely, the Lowe modified wide-mouthed frog protocol, the amended NeedhamûSchroeder symmetric key protocol, and Kerberos. We also show how to verify certain security properties of those protocols. With the logic TML+ and its associated modal tableaux, we are able to reason about and verify authentication systems operating in dynamic environments.
UR - http://www.scopus.com/inward/record.url?scp=67650581748&partnerID=8YFLogxK
U2 - 10.1109/TSMCB.2009.2019263
DO - 10.1109/TSMCB.2009.2019263
M3 - Article
C2 - 19423448
AN - SCOPUS:67650581748
SN - 1083-4419
VL - 39
SP - 889
EP - 900
JO - IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
JF - IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics
IS - 4
ER -