Projects per year
Abstract
Marine animals equipped with biological and physical electronic sensors have produced long-term data streams on key marine environmental variables, hydrography, animal behavior and ecology. These data are an essential component of the Global Ocean Observing System (GOOS). The Animal Borne Ocean Sensors (AniBOS) network aims to coordinate the long-term collection and delivery of marine data streams, providing a complementary capability to other GOOS networks that monitor Essential Ocean Variables (EOVs), essential climate variables (ECVs) and essential biodiversity variables (EBVs). AniBOS augments observations of temperature and salinity within the upper ocean, in areas that are under-sampled, providing information that is urgently needed for an improved understanding of climate and ocean variability and for forecasting. Additionally, measurements of chlorophyll fluorescence and dissolved oxygen concentrations are emerging. The observations AniBOS provides are used widely across the research, modeling and operational oceanographic communities. High latitude, shallow coastal shelves and tropical seas have historically been sampled poorly with traditional observing platforms for many reasons including sea ice presence, limited satellite coverage and logistical costs. Animal-borne sensors are helping to fill that gap by collecting and transmitting in near real time an average of 500 temperature-salinity-depth profiles per animal annually and, when instruments are recovered (∼30% of instruments deployed annually, n = 103 ± 34), up to 1,000 profiles per month in these regions. Increased observations from under-sampled regions greatly improve the accuracy and confidence in estimates of ocean state and improve studies of climate variability by delivering data that refine climate prediction estimates at regional and global scales. The GOOS Observations Coordination Group (OCG) reviews, advises on and coordinates activities across the global ocean observing networks to strengthen the effective implementation of the system. AniBOS was formally recognized in 2020 as a GOOS network. This improves our ability to observe the ocean’s structure and animals that live in them more comprehensively, concomitantly improving our understanding of global ocean and climate processes for societal benefit consistent with the UN Sustainability Goals 13 and 14: Climate and Life below Water. Working within the GOOS OCG framework ensures that AniBOS is an essential component of an integrated Global Ocean Observing System.
Original language | English |
---|---|
Article number | 751840 |
Pages (from-to) | 1-21 |
Number of pages | 21 |
Journal | Frontiers in Marine Science |
Volume | 8 |
DOIs | |
Publication status | Published - Nov 2021 |
Bibliographical note
Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Keywords
- animal behavior
- climate change
- Essential Ocean Variables (EOVs)
- marine animals
- physical oceanography
Fingerprint
Dive into the research topics of 'Animal Borne Ocean Sensors – AniBOS – an essential component of the Global Ocean Observing System'. Together they form a unique fingerprint.Projects
- 2 Finished
-
UWA led : Dynamically assess threats to marine megafauna in the face of global change
Sequeira, A., Harcourt, R., Eguiluz, V. M. & Sims, D. W.
24/02/21 → 23/02/23
Project: Research
-
The Role of Eastern Antarctic Polynyas in Global Ocean Circulation
Harcourt, R., Hindell, M. A., McMahon, C., Rintoul, S., Ohshima, K., van Wijk, E., Bestley, S. & Roquet, F.
13/06/18 → 31/12/22
Project: Other