Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia: Laboratory investigation

Sarah J. Hemley*, Lynne E. Bilston, Shaokoon Cheng, Marcus A. Stoodley

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)


Object. Noncommunicating canalicular syringomyelia occurs in up to 65% of patients with Chiari malformation Type I. The pathogenesis of this type of syringomyelia is poorly understood and treatment is not always effective. Although it is generally thought that syringomyelia is simply an accumulation of CSF from the subarachnoid space, the pathogenesis is likely to be more complex and may involve cellular and molecular processes. Aquaporin-4 (AQP4) has been implicated in numerous CNS pathological conditions involving fluid accumulation, including spinal cord edema. There is evidence that AQP4 facilitates the removal of extracellular water following vasogenic edema. The aim of this study was to investigate AQP4 expression and the structural and functional integrity of the blood-spinal cord barrier (BSCB) in a model of noncommunicating canalicular syringomyelia. Methods. A kaolin-induced model of canalicular syringomyelia was used to investigate BSCB permeability and AQP4 expression in 27 adult male Sprague-Dawley rats. Control groups consisted of nonoperated, laminectomy-only, and saline-injected animals. The structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen. Functional integrity of the BSCB was assessed by extravasation of systemically injected horseradish peroxidase (HRP) at 1, 3, 6, or 12 weeks after surgery. Immunofluorescence was used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression at 12 weeks following syrinx induction. Results. Extravasation of HRP was evident surrounding the central canal in 11 of 15 animals injected with kaolin, and in 2 of the 5 sham-injected animals. No disruption of the BSCB was observed in laminectomy-only controls. At 12 weeks the tracer leakage was widespread, occurring at every level rostral to the kaolin injection. At this time point there was a decrease in EBA expression in the gray matter surrounding the central canal from C-5 to C-7. Aquaporin-4 was expressed in gray- and white-matter astrocytes, predominantly at the glia limitans interna and externa, and to a lesser extent around neurons and blood vessels, in both control and syrinx animals. Expression of GFAP and APQ4 directly surrounding the central canal in kaolin-injected animals was variable and not significantly different from expression in controls. Conclusions. This study demonstrated a prolonged disruption of the BSCB directly surrounding the central canal in the experimental model of noncommunicating canalicular syringomyelia. The disruption was widespread at 12 weeks, when central canal dilation was most marked. Loss of integrity of the barrier with fluid entering the interstitial space of the spinal parenchyma may contribute to enlargement of the canal and progression of syringomyelia. Significant changes in AQP4 expression were not observed in this model of canalicular syringomyelia. Further investigation is needed to elucidate whether subtle changes in AQP4 expression occur in canalicular syringomyelia.

Original languageEnglish
Pages (from-to)602-612
Number of pages11
JournalJournal of Neurosurgery: Spine
Issue number6
Publication statusPublished - Dec 2012


Dive into the research topics of 'Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia: Laboratory investigation'. Together they form a unique fingerprint.

Cite this