Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia: Laboratory investigation

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Object. Noncommunicating canalicular syringomyelia occurs in up to 65% of patients with Chiari malformation Type I. The pathogenesis of this type of syringomyelia is poorly understood and treatment is not always effective. Although it is generally thought that syringomyelia is simply an accumulation of CSF from the subarachnoid space, the pathogenesis is likely to be more complex and may involve cellular and molecular processes. Aquaporin-4 (AQP4) has been implicated in numerous CNS pathological conditions involving fluid accumulation, including spinal cord edema. There is evidence that AQP4 facilitates the removal of extracellular water following vasogenic edema. The aim of this study was to investigate AQP4 expression and the structural and functional integrity of the blood-spinal cord barrier (BSCB) in a model of noncommunicating canalicular syringomyelia. Methods. A kaolin-induced model of canalicular syringomyelia was used to investigate BSCB permeability and AQP4 expression in 27 adult male Sprague-Dawley rats. Control groups consisted of nonoperated, laminectomy-only, and saline-injected animals. The structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen. Functional integrity of the BSCB was assessed by extravasation of systemically injected horseradish peroxidase (HRP) at 1, 3, 6, or 12 weeks after surgery. Immunofluorescence was used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression at 12 weeks following syrinx induction. Results. Extravasation of HRP was evident surrounding the central canal in 11 of 15 animals injected with kaolin, and in 2 of the 5 sham-injected animals. No disruption of the BSCB was observed in laminectomy-only controls. At 12 weeks the tracer leakage was widespread, occurring at every level rostral to the kaolin injection. At this time point there was a decrease in EBA expression in the gray matter surrounding the central canal from C-5 to C-7. Aquaporin-4 was expressed in gray- and white-matter astrocytes, predominantly at the glia limitans interna and externa, and to a lesser extent around neurons and blood vessels, in both control and syrinx animals. Expression of GFAP and APQ4 directly surrounding the central canal in kaolin-injected animals was variable and not significantly different from expression in controls. Conclusions. This study demonstrated a prolonged disruption of the BSCB directly surrounding the central canal in the experimental model of noncommunicating canalicular syringomyelia. The disruption was widespread at 12 weeks, when central canal dilation was most marked. Loss of integrity of the barrier with fluid entering the interstitial space of the spinal parenchyma may contribute to enlargement of the canal and progression of syringomyelia. Significant changes in AQP4 expression were not observed in this model of canalicular syringomyelia. Further investigation is needed to elucidate whether subtle changes in AQP4 expression occur in canalicular syringomyelia.

LanguageEnglish
Pages602-612
Number of pages11
JournalJournal of Neurosurgery: Spine
Volume17
Issue number6
DOIs
Publication statusPublished - Dec 2012

Fingerprint

Aquaporin 4
Syringomyelia
Permeability
Spinal Cord
Kaolin
Laminectomy
Glial Fibrillary Acidic Protein
Syringes
Horseradish Peroxidase
Edema
Arnold-Chiari Malformation
Subarachnoid Space
Extracellular Fluid
Neuroglia
Astrocytes
Fluorescent Antibody Technique
Blood Vessels
Sprague Dawley Rats
Dilatation
Theoretical Models

Cite this

@article{716c5387aaaa4ad9be09912969462ec8,
title = "Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia: Laboratory investigation",
abstract = "Object. Noncommunicating canalicular syringomyelia occurs in up to 65{\%} of patients with Chiari malformation Type I. The pathogenesis of this type of syringomyelia is poorly understood and treatment is not always effective. Although it is generally thought that syringomyelia is simply an accumulation of CSF from the subarachnoid space, the pathogenesis is likely to be more complex and may involve cellular and molecular processes. Aquaporin-4 (AQP4) has been implicated in numerous CNS pathological conditions involving fluid accumulation, including spinal cord edema. There is evidence that AQP4 facilitates the removal of extracellular water following vasogenic edema. The aim of this study was to investigate AQP4 expression and the structural and functional integrity of the blood-spinal cord barrier (BSCB) in a model of noncommunicating canalicular syringomyelia. Methods. A kaolin-induced model of canalicular syringomyelia was used to investigate BSCB permeability and AQP4 expression in 27 adult male Sprague-Dawley rats. Control groups consisted of nonoperated, laminectomy-only, and saline-injected animals. The structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen. Functional integrity of the BSCB was assessed by extravasation of systemically injected horseradish peroxidase (HRP) at 1, 3, 6, or 12 weeks after surgery. Immunofluorescence was used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression at 12 weeks following syrinx induction. Results. Extravasation of HRP was evident surrounding the central canal in 11 of 15 animals injected with kaolin, and in 2 of the 5 sham-injected animals. No disruption of the BSCB was observed in laminectomy-only controls. At 12 weeks the tracer leakage was widespread, occurring at every level rostral to the kaolin injection. At this time point there was a decrease in EBA expression in the gray matter surrounding the central canal from C-5 to C-7. Aquaporin-4 was expressed in gray- and white-matter astrocytes, predominantly at the glia limitans interna and externa, and to a lesser extent around neurons and blood vessels, in both control and syrinx animals. Expression of GFAP and APQ4 directly surrounding the central canal in kaolin-injected animals was variable and not significantly different from expression in controls. Conclusions. This study demonstrated a prolonged disruption of the BSCB directly surrounding the central canal in the experimental model of noncommunicating canalicular syringomyelia. The disruption was widespread at 12 weeks, when central canal dilation was most marked. Loss of integrity of the barrier with fluid entering the interstitial space of the spinal parenchyma may contribute to enlargement of the canal and progression of syringomyelia. Significant changes in AQP4 expression were not observed in this model of canalicular syringomyelia. Further investigation is needed to elucidate whether subtle changes in AQP4 expression occur in canalicular syringomyelia.",
author = "Hemley, {Sarah J.} and Bilston, {Lynne E.} and Shaokoon Cheng and Stoodley, {Marcus A.}",
year = "2012",
month = "12",
doi = "10.3171/2012.9.SPINE1265",
language = "English",
volume = "17",
pages = "602--612",
journal = "Journal of Neurosurgery: Spine",
issn = "1547-5654",
publisher = "American Association of Neurological Surgeons",
number = "6",

}

Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia : Laboratory investigation. / Hemley, Sarah J.; Bilston, Lynne E.; Cheng, Shaokoon; Stoodley, Marcus A.

In: Journal of Neurosurgery: Spine, Vol. 17, No. 6, 12.2012, p. 602-612.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Aquaporin-4 expression and blood-spinal cord barrier permeability in canalicular syringomyelia

T2 - Journal of Neurosurgery: Spine

AU - Hemley, Sarah J.

AU - Bilston, Lynne E.

AU - Cheng, Shaokoon

AU - Stoodley, Marcus A.

PY - 2012/12

Y1 - 2012/12

N2 - Object. Noncommunicating canalicular syringomyelia occurs in up to 65% of patients with Chiari malformation Type I. The pathogenesis of this type of syringomyelia is poorly understood and treatment is not always effective. Although it is generally thought that syringomyelia is simply an accumulation of CSF from the subarachnoid space, the pathogenesis is likely to be more complex and may involve cellular and molecular processes. Aquaporin-4 (AQP4) has been implicated in numerous CNS pathological conditions involving fluid accumulation, including spinal cord edema. There is evidence that AQP4 facilitates the removal of extracellular water following vasogenic edema. The aim of this study was to investigate AQP4 expression and the structural and functional integrity of the blood-spinal cord barrier (BSCB) in a model of noncommunicating canalicular syringomyelia. Methods. A kaolin-induced model of canalicular syringomyelia was used to investigate BSCB permeability and AQP4 expression in 27 adult male Sprague-Dawley rats. Control groups consisted of nonoperated, laminectomy-only, and saline-injected animals. The structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen. Functional integrity of the BSCB was assessed by extravasation of systemically injected horseradish peroxidase (HRP) at 1, 3, 6, or 12 weeks after surgery. Immunofluorescence was used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression at 12 weeks following syrinx induction. Results. Extravasation of HRP was evident surrounding the central canal in 11 of 15 animals injected with kaolin, and in 2 of the 5 sham-injected animals. No disruption of the BSCB was observed in laminectomy-only controls. At 12 weeks the tracer leakage was widespread, occurring at every level rostral to the kaolin injection. At this time point there was a decrease in EBA expression in the gray matter surrounding the central canal from C-5 to C-7. Aquaporin-4 was expressed in gray- and white-matter astrocytes, predominantly at the glia limitans interna and externa, and to a lesser extent around neurons and blood vessels, in both control and syrinx animals. Expression of GFAP and APQ4 directly surrounding the central canal in kaolin-injected animals was variable and not significantly different from expression in controls. Conclusions. This study demonstrated a prolonged disruption of the BSCB directly surrounding the central canal in the experimental model of noncommunicating canalicular syringomyelia. The disruption was widespread at 12 weeks, when central canal dilation was most marked. Loss of integrity of the barrier with fluid entering the interstitial space of the spinal parenchyma may contribute to enlargement of the canal and progression of syringomyelia. Significant changes in AQP4 expression were not observed in this model of canalicular syringomyelia. Further investigation is needed to elucidate whether subtle changes in AQP4 expression occur in canalicular syringomyelia.

AB - Object. Noncommunicating canalicular syringomyelia occurs in up to 65% of patients with Chiari malformation Type I. The pathogenesis of this type of syringomyelia is poorly understood and treatment is not always effective. Although it is generally thought that syringomyelia is simply an accumulation of CSF from the subarachnoid space, the pathogenesis is likely to be more complex and may involve cellular and molecular processes. Aquaporin-4 (AQP4) has been implicated in numerous CNS pathological conditions involving fluid accumulation, including spinal cord edema. There is evidence that AQP4 facilitates the removal of extracellular water following vasogenic edema. The aim of this study was to investigate AQP4 expression and the structural and functional integrity of the blood-spinal cord barrier (BSCB) in a model of noncommunicating canalicular syringomyelia. Methods. A kaolin-induced model of canalicular syringomyelia was used to investigate BSCB permeability and AQP4 expression in 27 adult male Sprague-Dawley rats. Control groups consisted of nonoperated, laminectomy-only, and saline-injected animals. The structural integrity of the BSCB was assessed using immunoreactivity to endothelial barrier antigen. Functional integrity of the BSCB was assessed by extravasation of systemically injected horseradish peroxidase (HRP) at 1, 3, 6, or 12 weeks after surgery. Immunofluorescence was used to assess AQP4 and glial fibrillary acidic protein (GFAP) expression at 12 weeks following syrinx induction. Results. Extravasation of HRP was evident surrounding the central canal in 11 of 15 animals injected with kaolin, and in 2 of the 5 sham-injected animals. No disruption of the BSCB was observed in laminectomy-only controls. At 12 weeks the tracer leakage was widespread, occurring at every level rostral to the kaolin injection. At this time point there was a decrease in EBA expression in the gray matter surrounding the central canal from C-5 to C-7. Aquaporin-4 was expressed in gray- and white-matter astrocytes, predominantly at the glia limitans interna and externa, and to a lesser extent around neurons and blood vessels, in both control and syrinx animals. Expression of GFAP and APQ4 directly surrounding the central canal in kaolin-injected animals was variable and not significantly different from expression in controls. Conclusions. This study demonstrated a prolonged disruption of the BSCB directly surrounding the central canal in the experimental model of noncommunicating canalicular syringomyelia. The disruption was widespread at 12 weeks, when central canal dilation was most marked. Loss of integrity of the barrier with fluid entering the interstitial space of the spinal parenchyma may contribute to enlargement of the canal and progression of syringomyelia. Significant changes in AQP4 expression were not observed in this model of canalicular syringomyelia. Further investigation is needed to elucidate whether subtle changes in AQP4 expression occur in canalicular syringomyelia.

UR - http://www.scopus.com/inward/record.url?scp=84870711231&partnerID=8YFLogxK

U2 - 10.3171/2012.9.SPINE1265

DO - 10.3171/2012.9.SPINE1265

M3 - Article

VL - 17

SP - 602

EP - 612

JO - Journal of Neurosurgery: Spine

JF - Journal of Neurosurgery: Spine

SN - 1547-5654

IS - 6

ER -