Abstract
Olshausen and Field (1996) developed a simple cell receptive field model for natural scene processing in V1, based on unsupervised learning and non-orthogonal basis function optimization of an overcomplete representation of visual space. The model was originally tested with an ensemble of whitened natural scenes, simulating pre-cortical filtering in the retinal ganglia and lateral geniculate nucleus, and the basis functions qualitatively resembled the orientation-specific responses of V1 simple cells in the spatial domain. In this study, the quantitative tuning responses of the basis functions in the spectral domain are estimated using a Gaussian model, to determine their goodness-of-fit to the known bandwidths of simple cells in primate V1. Five simulation experiments which examined key features of the model are reported: changing the size of the basis functions; using a complete versus over-complete representation; changing the sparseness factor; using a variable learning rate; and mapping the basis functions with a whitening spatial function. The key finding of this study is that across all image themes, basis function sizes, number of basis functions, sparseness factors and learning rates, the spatial-frequency tuning did not closely resemble that of primate area 17 — the model results more closely resembled the unclassified cat neurones of area 19 with a single exception, and not area 17 as predicted.
Original language | English |
---|---|
Pages (from-to) | 333-353 |
Number of pages | 21 |
Journal | Journal of integrative neuroscience |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2006 |
Externally published | Yes |
Keywords
- natural scenes
- basis functions
- simple cells
- sparse coding