Arrayed waveguide gratings for astronomy with multiple offaxis fibre launch

Nick Cvetojevic*, Nemanja Jovanovic, Joss Bland-Hawthorn, Roger Haynes, Jon Lawrence

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference proceeding contribution

Abstract

The next generation of major ground-based optical and near-infrared astronomical telescopes are planned to have aperture sizes from 25-42 meters in diameter, making them substantially larger than existing telescopes. This has a major impact on seeing limited spectroscopic instrumentation, as the size of the instrument grows in proportion to the telescope aperture for traditional designs and more importantly, the cost of the instrument increases with the telescope aperture squared, or faster [1]. This unsustainable trend has necessitated a miniaturization of devices for astronomy, with integrated photonics showing great promise. Particularly of interest is the integrated photonic spectrograph (IPS) [1,2].

Original languageEnglish
Title of host publication2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)
Place of PublicationPiscataway, N.J.
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages1-1
Number of pages1
ISBN (Electronic)9781457705328
ISBN (Print)9781457705335
DOIs
Publication statusPublished - 2011
Event2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011 - Munich, Germany
Duration: 22 May 201126 May 2011

Other

Other2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference, CLEO EUROPE/EQEC 2011
CountryGermany
CityMunich
Period22/05/1126/05/11

Fingerprint Dive into the research topics of 'Arrayed waveguide gratings for astronomy with multiple offaxis fibre launch'. Together they form a unique fingerprint.

Cite this