Artificial intelligence and COVID-19

deep learning approaches for diagnosis and treatment

Mohammad (Behdad) Jamshidi*, Ali Lalbakhsh, Jakub Talla, Zdeněk Peroutka, Farimah Hadjilooei, Pedram Lalbakhsh, Morteza Jamshidi, Luigi La Spada, Mirhamed Mirmozafari, Mojgan Dehghani, Asal Sabet, Saeed Roshani, Sobhan Roshani, Nima Bayat-Makou, Bahare Mohamadzade, Zahra Malek, Alireza Jamshidi, Sarah Kiani, Hamed Hashemi-Dezaki, Wahab Mohyuddin

*Corresponding author for this work

Research output: Contribution to journalArticle

7 Citations (Scopus)
40 Downloads (Pure)

Abstract

COVID-19 outbreak has put the whole world in an unprecedented difficult situation bringing life around the world to a frightening halt and claiming thousands of lives. Due to COVID-19's spread in 212 countries and territories and increasing numbers of infected cases and death tolls mounting to 5,212,172 and 334,915 (as of May 22 2020), it remains a real threat to the public health system. This paper renders a response to combat the virus through Artificial Intelligence (AI). Some Deep Learning (DL) methods have been illustrated to reach this goal, including Generative Adversarial Networks (GANs), Extreme Learning Machine (ELM), and Long/Short Term Memory (LSTM). It delineates an integrated bioinformatics approach in which different aspects of information from a continuum of structured and unstructured data sources are put together to form the user-friendly platforms for physicians and researchers. The main advantage of these AI-based platforms is to accelerate the process of diagnosis and treatment of the COVID-19 disease. The most recent related publications and medical reports were investigated with the purpose of choosing inputs and targets of the network that could facilitate reaching a reliable Artificial Neural Network-based tool for challenges associated with COVID-19. Furthermore, there are some specific inputs for each platform, including various forms of the data, such as clinical data and medical imaging which can improve the performance of the introduced approaches toward the best responses in practical applications.

Original languageEnglish
Pages (from-to)109581-109595
Number of pages15
JournalIEEE Access
Volume8
DOIs
Publication statusPublished - 2020

Bibliographical note

Copyright the Author(s). Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint Dive into the research topics of 'Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment'. Together they form a unique fingerprint.

Cite this