TY - JOUR
T1 - Artificial intelligence extension of the OSCAR-IB criteria
AU - Petzold, Axel
AU - Albrecht, Philipp
AU - Balcer, Laura
AU - Bekkers, Erik
AU - Brandt, Alexander U.
AU - Calabresi, Peter A.
AU - Deborah, Orla Galvin
AU - Graves, Jennifer S.
AU - Green, Ari
AU - Keane, Pearse A.
AU - Nij Bijvank, Jenny A.
AU - Sander, Josemir W
AU - Paul, Friedemann
AU - Saidha, Shiv
AU - Villoslada, Pablo
AU - Wagner, Siegfried K.
AU - Yeh, E. Ann
AU - IMSVISUAL, ERN-EYE Consortium
AU - Aktas, Orhan
AU - Antel, Jack
AU - Asgari, Nasrin
AU - Audo, Isabelle
AU - Avasarala, Jagannadha
AU - Daly, Avril
AU - Bagnato, Francesca R.
AU - Banwell, Brenda
AU - Bar-Or, Amit
AU - Behbehani, Raed
AU - Belzunce Manterola, Arnaldo
AU - Bennett, Jeffrey
AU - Benson, Leslie
AU - Bernard, Jacqueline
AU - Bremond-Gignac, Dominique
AU - Britze, Josefine
AU - Burton, Jodie
AU - Calkwood, Jonathan
AU - Carroll, William
AU - Chandratheva, Arvind
AU - Cohen, Jeffrey
AU - Comi, Giancarlo
AU - Cordano, Christian
AU - Costa, Silvana
AU - Costello, Fiona
AU - Courtney, Ardith
AU - Cruz-Herranz, Anes
AU - Cutter, Gary
AU - Crabb, David
AU - De Seze, Jerome
AU - Diem, Ricarda
AU - Dollfus, Helene
AU - El Ayoubi, Nabil K.
AU - Fasser, Christina
AU - Finke, Carsten
AU - Fischer, Dominik
AU - Fitzgerald, Kathryn
AU - Fonseca, Pedro
AU - Frederiksen, Jette L.
AU - Frohman, Elliot
AU - Frohman, Teresa
AU - Fujihara, Kazuo
AU - Gabilondo Cuellar, Inigo
AU - Galetta, Steven
AU - Garcia-Martin, Elena
AU - Giovannoni, Gavin
AU - Glebauskiene, Brigita
AU - Gonzalez Suarez, Ines
AU - Pihl Jensen, Gorm
AU - Hamann, Steffen
AU - Hartung, Hans-Peter
AU - Havla, Joachim
AU - Hemmer, Bernhard
AU - Huang, Su-Chun
AU - Imitola, Jaime
AU - Jasinskas, Vytautas
AU - Jiang, Hong
AU - Kafieh, Rahele
AU - Kappos, Ludwig
AU - Kardon, Randy
AU - Keegan, David
AU - Kildebeck, Eric
AU - Kim, Ungsoo Samuel
AU - Klistorner, Sasha
AU - Knier, Benjamin
AU - Kolbe, Scott
AU - Korn, Thomas
AU - Krupp, Lauren
AU - Lagrèze, Wolf
AU - Leocani, Letizia
AU - Levin, Netta
AU - Liskova, Petra
AU - Lizrova Preiningerova, Jana
AU - Lorenz, Birgit
AU - May, Eugene
AU - Miller, David
AU - Mikolajczak, Janine
AU - Mohand-Saïd, Saddek
AU - Montalban, Xavier
AU - Morrow, Mark
AU - Mowry, Ellen
AU - Murta, Joaquim
AU - Navas, Carlos
AU - Nolan, Rachel
AU - Nowomiejska, Katarzyna
AU - Oertel, Frederike Cosima
AU - Oh, Jiwon
AU - Oreja-Guevara, Celia
AU - Orssaud, Christophe
AU - Osborne, Benjamin
AU - Outteryck, Olivier
AU - Paiva, Catarina
AU - Palace, Jacky
AU - Papadopoulou, Athina
AU - Patsopoulos, Nikos
AU - Preiningerova, Jana Lizrova
AU - Pontikos, Nikolas
AU - Preising, Markus
AU - Prince, Jerry
AU - Reich, Daniel
AU - Rejdak, Robert
AU - Ringelstein, Marius
AU - Rodriguez de Antonio, Luis
AU - Sahel, José-Alain
AU - Sanchez-Dalmau, Bernardo
AU - Sastre-Garriga, Jaume
AU - Schippling, Sven
AU - Schuman, Joel
AU - Shindler, Ken
AU - Shin, Robert
AU - Shuey, Neil
AU - Soelberg, Kerstin
AU - Specovius, Svenja
AU - Suppiej, Agnese
AU - Thompson, Alan
AU - Toosy, Ahmed
AU - Torres, Rubén
AU - Touitou, Valerie
AU - Trauzettel-Klosinski, Susanne
AU - van der Walt, Anneke
AU - Vermersch, Patrick
AU - Vidal-Jordana, Angela
AU - Waldman, Amy T.
AU - Waters, Christian
AU - Wheeler, Russell
AU - White, Owen
AU - Wilhelm, Helmut
AU - Winges, Kimberly M.
AU - Wiegerinck, Nils
AU - Wiehe, Lenja
AU - Wisnewski, Thomas
AU - Wong, Sui
AU - Wurfel, Jens
AU - Yaghi, Shadi
AU - You, Yuyi
AU - Yu, Zhaoxia
AU - Yu-Wai-Man, Patrick
AU - Zemaitiene, Reda
AU - Zimmermann, Hanna
N1 - Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2021/7
Y1 - 2021/7
N2 - Artificial intelligence (AI)-based diagnostic algorithms have achieved ambitious aims through automated image pattern recognition. For neurological disorders, this includes neurodegeneration and inflammation. Scalable imaging technology for big data in neurology is optical coherence tomography (OCT). We highlight that OCT changes observed in the retina, as a window to the brain, are small, requiring rigorous quality control pipelines. There are existing tools for this purpose. Firstly, there are human-led validated consensus quality control criteria (OSCAR-IB) for OCT. Secondly, these criteria are embedded into OCT reporting guidelines (APOSTEL). The use of the described annotation of failed OCT scans advances machine learning. This is illustrated through the present review of the advantages and disadvantages of AI-based applications to OCT data. The neurological conditions reviewed here for the use of big data include Alzheimer disease, stroke, multiple sclerosis (MS), Parkinson disease, and epilepsy. It is noted that while big data is relevant for AI, ownership is complex. For this reason, we also reached out to involve representatives from patient organizations and the public domain in addition to clinical and research centers. The evidence reviewed can be grouped in a five-point expansion of the OSCAR-IB criteria to embrace AI (OSCAR-AI). The review concludes by specific recommendations on how this can be achieved practically and in compliance with existing guidelines.
AB - Artificial intelligence (AI)-based diagnostic algorithms have achieved ambitious aims through automated image pattern recognition. For neurological disorders, this includes neurodegeneration and inflammation. Scalable imaging technology for big data in neurology is optical coherence tomography (OCT). We highlight that OCT changes observed in the retina, as a window to the brain, are small, requiring rigorous quality control pipelines. There are existing tools for this purpose. Firstly, there are human-led validated consensus quality control criteria (OSCAR-IB) for OCT. Secondly, these criteria are embedded into OCT reporting guidelines (APOSTEL). The use of the described annotation of failed OCT scans advances machine learning. This is illustrated through the present review of the advantages and disadvantages of AI-based applications to OCT data. The neurological conditions reviewed here for the use of big data include Alzheimer disease, stroke, multiple sclerosis (MS), Parkinson disease, and epilepsy. It is noted that while big data is relevant for AI, ownership is complex. For this reason, we also reached out to involve representatives from patient organizations and the public domain in addition to clinical and research centers. The evidence reviewed can be grouped in a five-point expansion of the OSCAR-IB criteria to embrace AI (OSCAR-AI). The review concludes by specific recommendations on how this can be achieved practically and in compliance with existing guidelines.
UR - http://www.scopus.com/inward/record.url?scp=85105998632&partnerID=8YFLogxK
U2 - 10.1002/acn3.51320
DO - 10.1002/acn3.51320
M3 - Review article
C2 - 34008926
VL - 8
SP - 1528
EP - 1542
JO - Annals of Clinical and Translational Neurology
JF - Annals of Clinical and Translational Neurology
SN - 2328-9503
IS - 7
ER -