Abstract
The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.
Original language | English |
---|---|
Article number | 7 |
Pages (from-to) | 1-54 |
Number of pages | 54 |
Journal | Computing and Software for Big Science |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2022 |
Externally published | Yes |
Bibliographical note
Copyright the Publisher 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Computing and Software for Big Science, Vol. 6, No. 1, 7, 12.2022, p. 1-54.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - AtlFast3
T2 - the Next Generation of Fast Simulation in ATLAS
AU - ATLAS Collaboration
AU - Aad, G.
AU - Abbott, B.
AU - Abbott, D. C.
AU - Abud, A. Abed
AU - Abeling, K.
AU - Abhayasinghe, D. K.
AU - Abidi, S. H.
AU - Aboulhorma, A.
AU - Abramowicz, H.
AU - Abreu, H.
AU - Abulaiti, Y.
AU - Hoffman, A. C.Abusleme
AU - Acharya, B. S.
AU - Achkar, B.
AU - Adam, L.
AU - Bourdarios, C. Adam
AU - Adamczyk, L.
AU - Adamek, L.
AU - Addepalli, S. V.
AU - Adelman, J.
AU - Adiguzel, A.
AU - Adorni, S.
AU - Adye, T.
AU - Affolder, A. A.
AU - Afik, Y.
AU - Agapopoulou, C.
AU - Agaras, M. N.
AU - Agarwala, J.
AU - Aggarwal, A.
AU - Agheorghiesei, C.
AU - Aguilar-Saavedra, J. A.
AU - Ahmad, A.
AU - Ahmadov, F.
AU - Ahmed, W. S.
AU - Ai, X.
AU - Aielli, G.
AU - Aizenberg, I.
AU - Akatsuka, S.
AU - Akbiyik, M.
AU - Åkesson, T. P.A.
AU - Akimov, A. V.
AU - Khoury, K. Al
AU - Alberghi, G. L.
AU - Albert, J.
AU - Albicocco, P.
AU - Verzini, M. J.Alconada
AU - Alderweireldt, S.
AU - Aleksa, M.
AU - Aleksandrov, I. N.
AU - Alexa, C.
AU - Alexopoulos, T.
AU - Alfonsi, A.
AU - Alfonsi, F.
AU - Alhroob, M.
AU - Ali, B.
AU - Ali, S.
AU - Aliev, M.
AU - Alimonti, G.
AU - Allaire, C.
AU - Allbrooke, B. M.M.
AU - Allport, P. P.
AU - Aloisio, A.
AU - Alonso, F.
AU - Alpigiani, C.
AU - Camelia, E. Alunno
AU - Estevez, M. Alvarez
AU - Alviggi, M. G.
AU - Coutinho, Y. Amaral
AU - Ambler, A.
AU - Ambroz, L.
AU - Amelung, C.
AU - Amidei, D.
AU - Santos, S. P.Amor Dos
AU - Amoroso, S.
AU - Amos, K. R.
AU - Amrouche, C. S.
AU - Ananiev, V.
AU - Anastopoulos, C.
AU - Andari, N.
AU - Andeen, T.
AU - Anders, J. K.
AU - Andrean, S. Y.
AU - Andreazza, A.
AU - Angelidakis, S.
AU - Angerami, A.
AU - Anisenkov, A. V.
AU - Annovi, A.
AU - Antel, C.
AU - Anthony, M. T.
AU - Antipov, E.
AU - Antonelli, M.
AU - Antrim, D. J.A.
AU - Anulli, F.
AU - Aoki, M.
AU - Pozo, J. A.Aparisi
AU - Aparo, M. A.
AU - Bella, L. Aperio
AU - Aranzabal, N.
AU - Ferraz, V. Araujo
AU - Arcangeletti, C.
AU - Arce, A. T.H.
AU - Arena, E.
AU - Arguin, J. F.
AU - Argyropoulos, S.
AU - Arling, J. H.
AU - Armbruster, A. J.
AU - Armstrong, A.
AU - Arnaez, O.
AU - Arnold, H.
AU - Tame, Z. P.Arrubarrena
AU - Artoni, G.
AU - Asada, H.
AU - Asai, K.
AU - Asai, S.
AU - Asbah, N. A.
AU - Asimakopoulou, E. M.
AU - Asquith, L.
AU - Assahsah, J.
AU - Assamagan, K.
AU - Astalos, R.
AU - Atkin, R. J.
AU - Atkinson, M.
AU - Atlay, N. B.
AU - Atmani, H.
AU - Atmasiddha, P. A.
AU - Augsten, K.
AU - Auricchio, S.
AU - Austrup, V. A.
AU - Avner, G.
AU - Avolio, G.
AU - Ayoub, M. K.
AU - Azuelos, G.
AU - Babal, D.
AU - Bachacou, H.
AU - Bachas, K.
AU - Bachiu, A.
AU - Backman, F.
AU - Badea, A.
AU - Bagnaia, P.
AU - Bahrasemani, H.
AU - Bailey, A. J.
AU - Bailey, V. R.
AU - Baines, J. T.
AU - Bakalis, C.
AU - Baker, O. K.
AU - Bakker, P. J.
AU - Bakos, E.
AU - Gupta, D. Bakshi
AU - Balaji, S.
AU - Balasubramanian, R.
AU - Baldin, E. M.
AU - Balek, P.
AU - Ballabene, E.
AU - Balli, F.
AU - Baltes, L. M.
AU - Balunas, W. K.
AU - Balz, J.
AU - Banas, E.
AU - Bandieramonte, M.
AU - Bandyopadhyay, A.
AU - Bansal, S.
AU - Barak, L.
AU - Barberio, E. L.
AU - Barberis, D.
AU - Barbero, M.
AU - Barbour, G.
AU - Barends, K. N.
AU - Barillari, T.
AU - Barisits, M. S.
AU - Barkeloo, J.
AU - Barklow, T.
AU - Barnett, B. M.
AU - Barnett, R. M.
AU - Baroncelli, A.
AU - Barone, G.
AU - Barr, A. J.
AU - Navarro, L. Barranco
AU - Barreiro, F.
AU - da Costa, J. Barreiro Guimarães
AU - Barron, U.
AU - Barsov, S.
AU - Bartels, F.
AU - Bartoldus, R.
AU - Bartolini, G.
AU - Barton, A. E.
AU - Bartos, P.
AU - Basalaev, A.
AU - Basan, A.
AU - Baselga, M.
AU - Bashta, I.
AU - Bassalat, A.
AU - Basso, M. J.
AU - Basson, C. R.
AU - Bates, R. L.
AU - Batlamous, S.
AU - Batley, J. R.
AU - Batool, B.
AU - Battaglia, M.
AU - Bauce, M.
AU - Bauer, F.
AU - Bauer, P.
AU - Bawa, H. S.
AU - Bayirli, A.
AU - Beacham, J. B.
AU - Beau, T.
AU - Beauchemin, P. H.
AU - Becherer, F.
AU - Bechtle, P.
AU - Beck, H. P.
AU - Becker, K.
AU - Becot, C.
AU - Beddall, A. J.
AU - Bednyakov, V. A.
AU - Bee, C. P.
AU - Beermann, T. A.
AU - Begalli, M.
AU - Begel, M.
AU - Behera, A.
AU - Behr, J. K.
AU - Da Cruz E Silva, C. Beirao
AU - Beirer, J. F.
AU - Beisiegel, F.
AU - Belfkir, M.
AU - Bella, G.
AU - Bellagamba, L.
AU - Bellerive, A.
AU - Bellos, P.
AU - Beloborodov, K.
AU - Belotskiy, K.
AU - Belyaev, N. L.
AU - Benchekroun, D.
AU - Benhammou, Y.
AU - Benjamin, D. P.
AU - Benoit, M.
AU - Bensinger, J. R.
AU - Bentvelsen, S.
AU - Beresford, L.
AU - Beretta, M.
AU - Berge, D.
AU - Kuutmann, E. Bergeaas
AU - Berger, N.
AU - Bergmann, B.
AU - Bergsten, L. J.
AU - Beringer, J.
AU - Berlendis, S.
AU - Bernardi, G.
AU - Bernius, C.
AU - Bernlochner, F. U.
AU - Berry, T.
AU - Shojaii, J.
N1 - Copyright the Publisher 2022. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.
PY - 2022/12
Y1 - 2022/12
N2 - The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.
AB - The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed to meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.
UR - http://www.scopus.com/inward/record.url?scp=85126227550&partnerID=8YFLogxK
U2 - 10.1007/s41781-021-00079-7
DO - 10.1007/s41781-021-00079-7
M3 - Article
AN - SCOPUS:85126227550
SN - 2510-2044
VL - 6
SP - 1
EP - 54
JO - Computing and Software for Big Science
JF - Computing and Software for Big Science
IS - 1
M1 - 7
ER -