TY - JOUR
T1 - Attentional load attenuates synaesthetic priming effects in grapheme-colour synaesthesia
AU - Mattingley, Jason B.
AU - Payne, Jonathan M.
AU - Rich, Anina N.
PY - 2006
Y1 - 2006
N2 - One of the hallmarks of grapheme-colour synaesthesia is that colours induced by letters, digits and words tend to interfere with the identification of coloured targets when the two colours are different, i.e., when they are incongruent. In a previous investigation (Mattingley et al., 2001) we found that this synaesthetic congruency effect occurs when an achromatic-letter prime precedes a coloured target, but that the effect disappears when the letter is pattern masked to prevent conscious recognition of its identity. Here we investigated whether selective attention modulates the synaesthetic congruency effect in a letter-priming task. Fourteen grapheme-colour synaesthetes and 14 matched, non-synaesthetic controls participated. The amount of selective attention available to process the letter-prime was limited by having participants perform a secondary visual task that involved discriminating pairs of gaps in adjacent limbs of a diamond surrounding the prime. In separate blocks of trials the attentional load of the secondary task was systematically varied to yield 'low load' and 'high load' conditions. We found a significant congruency effect for synaesthetes, but not for controls, when they performed a secondary attention-demanding task during presentation of the letter prime. Crucially, however, the magnitude of this priming was significantly reduced under conditions of high-load relative to low-load, indicating that attention plays an important role in modulating synaesthesia. Our findings help to explain the observation that synaesthetic colour experiences are often weak or absent during attention-demanding tasks.
AB - One of the hallmarks of grapheme-colour synaesthesia is that colours induced by letters, digits and words tend to interfere with the identification of coloured targets when the two colours are different, i.e., when they are incongruent. In a previous investigation (Mattingley et al., 2001) we found that this synaesthetic congruency effect occurs when an achromatic-letter prime precedes a coloured target, but that the effect disappears when the letter is pattern masked to prevent conscious recognition of its identity. Here we investigated whether selective attention modulates the synaesthetic congruency effect in a letter-priming task. Fourteen grapheme-colour synaesthetes and 14 matched, non-synaesthetic controls participated. The amount of selective attention available to process the letter-prime was limited by having participants perform a secondary visual task that involved discriminating pairs of gaps in adjacent limbs of a diamond surrounding the prime. In separate blocks of trials the attentional load of the secondary task was systematically varied to yield 'low load' and 'high load' conditions. We found a significant congruency effect for synaesthetes, but not for controls, when they performed a secondary attention-demanding task during presentation of the letter prime. Crucially, however, the magnitude of this priming was significantly reduced under conditions of high-load relative to low-load, indicating that attention plays an important role in modulating synaesthesia. Our findings help to explain the observation that synaesthetic colour experiences are often weak or absent during attention-demanding tasks.
KW - synaesthesia
KW - selective attention
KW - perceptual load
KW - Stroop effect
KW - priming
KW - awareness
UR - http://www.scopus.com/inward/record.url?scp=33646186091&partnerID=8YFLogxK
U2 - 10.1016/S0010-9452(08)70346-0
DO - 10.1016/S0010-9452(08)70346-0
M3 - Article
C2 - 16683495
AN - SCOPUS:33646186091
SN - 0010-9452
VL - 42
SP - 213
EP - 221
JO - Cortex
JF - Cortex
IS - 2
ER -