Autoencoder for wind power prediction

Sumaira Tasnim, Ashfaqur Rahman*, Amanullah Maung Than Oo, Md. Enamul Haque

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Downloads (Pure)

Abstract

Successful integration of renewable energy sources like wind power into smart grids largely depends on accurate prediction of power from these intermittent sources. Production of wind power cannot be controlled as the wind speed can vary based on weather conditions. Accurate prediction of wind power can assist smart grid that intelligently decides on the usage of alternative power sources based on demand forecast. Time series wind speed data are normally used for wind power prediction. In this paper, we have investigated the usage of a set of secondary features obtained using deep learning for wind power prediction. Deep learning is a special form on neural network that is capable of capturing the structural properties of time series data in terms of a set of numeric features. More precisely, we have designed a two-stage autoencoder (a particular type of deep learning) and incorporated the structural features into a prediction framework. Using the structural features, we have achieved as high as 12.63% better prediction accuracy than traditionally used statistical features.
Original languageEnglish
Article number6
Pages (from-to)1-11
Number of pages11
JournalRenewables: Wind, Water, and Solar
Volume4
DOIs
Publication statusPublished - 2017
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Fingerprint

Dive into the research topics of 'Autoencoder for wind power prediction'. Together they form a unique fingerprint.

Cite this