Automated machine learning model development for intracranial aneurysm treatment outcome prediction: a feasibility study

Chubin Ou, Jiahui Liu, Yi Qian, Winston Chong, Dangqi Liu, Xuying He, Xin Zhang*, Chuan Zhi Duan

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    12 Citations (Scopus)
    103 Downloads (Pure)

    Abstract

    Background: The prediction of aneurysm treatment outcomes can help to optimize the treatment strategies. Machine learning (ML) has shown positive results in many clinical areas. However, the development of such models requires expertise in ML, which is not an easy task for surgeons. Objectives: The recently emerged automated machine learning (AutoML) has shown promise in making ML more accessible to non-computer experts. We aimed to evaluate the feasibility of applying AutoML to develop the ML models for treatment outcome prediction. Methods: The patients with aneurysms treated by endovascular treatment were prospectively recruited from 2016 to 2020. Treatment was considered successful if angiographic complete occlusion was achieved at follow-up. A statistical prediction model was developed using multivariate logistic regression. In addition, two ML models were developed. One was developed manually and the other was developed by AutoML. Three models were compared based on their area under the precision-recall curve (AUPRC) and area under the receiver operating characteristic curve (AUROC). Results: The aneurysm size, stent-assisted coiling (SAC), and posterior circulation were the three significant and independent variables associated with treatment outcome. The statistical model showed an AUPRC of 0.432 and AUROC of 0.745. The conventional manually trained ML model showed an improved AUPRC of 0.545 and AUROC of 0.781. The AutoML derived ML model showed the best performance with AUPRC of 0.632 and AUROC of 0.832, significantly better than the other two models. Conclusions: This study demonstrated the feasibility of using AutoML to develop a high-quality ML model, which may outperform the statistical model and manually derived ML models. AutoML could be a useful tool that makes ML more accessible to the clinical researchers.

    Original languageEnglish
    Article number735142
    Pages (from-to)1-8
    Number of pages8
    JournalFrontiers in Neurology
    Volume12
    DOIs
    Publication statusPublished - 29 Nov 2021

    Bibliographical note

    Copyright the Author(s) 2021. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

    Keywords

    • AutoML
    • endovascular treatment
    • intracranial aneurysm
    • machine learning
    • stroke

    Fingerprint

    Dive into the research topics of 'Automated machine learning model development for intracranial aneurysm treatment outcome prediction: a feasibility study'. Together they form a unique fingerprint.

    Cite this