Automatic mining of symptom severity from psychiatric evaluation notes

George Karystianis*, Alejo J. Nevado, Chi Hun Kim, Azad Dehghan, John A. Keane, Goran Nenadic

*Corresponding author for this work

Research output: Contribution to journalArticle

5 Citations (Scopus)
14 Downloads (Pure)

Abstract

Objectives: As electronic mental health records become more widely available, several approaches have been suggested to automatically extract information from free-text narrative aiming to support epidemiological research and clinical decision-making. In this paper, we explore extraction of explicit mentions of symptom severity from initial psychiatric evaluation records. We use the data provided by the 2016 CEGS N-GRID NLP shared task Track 2, which contains 541 records manually annotated for symptom severity according to the Research Domain Criteria. Methods: We designed and implemented 3 automatic methods: a knowledge-driven approach relying on local lexicalized rules based on common syntactic patterns in text suggesting positive valence symptoms; a machine learning method using a neural network; and a hybrid approach combining the first 2 methods with a neural network. Results: The results on an unseen evaluation set of 216 psychiatric evaluation records showed a performance of 80.1% for the rule-based method, 73.3% for the machine-learning approach, and 72.0% for the hybrid one. Conclusions: Although more work is needed to improve the accuracy, the results are encouraging and indicate that automated text mining methods can be used to classify mental health symptom severity from free text psychiatric notes to support epidemiological and clinical research.

Original languageEnglish
Article numbere1602
Pages (from-to)1-11
Number of pages11
JournalInternational Journal of Methods in Psychiatric Research
Volume27
Issue number1
DOIs
Publication statusPublished - 1 Mar 2018

Bibliographical note

Copyright the Author(s) 2017. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.

Keywords

  • classification
  • neural networks
  • psychiatric evaluation records
  • rule-based approach
  • text mining

Fingerprint Dive into the research topics of 'Automatic mining of symptom severity from psychiatric evaluation notes'. Together they form a unique fingerprint.

  • Cite this

    Karystianis, G., Nevado, A. J., Kim, C. H., Dehghan, A., Keane, J. A., & Nenadic, G. (2018). Automatic mining of symptom severity from psychiatric evaluation notes. International Journal of Methods in Psychiatric Research, 27(1), 1-11. [e1602]. https://doi.org/10.1002/mpr.1602