Abstract
Backtracking adaptive search is a simplified stochastic optimiza-tion procedure which permits the acceptance of worsening objective function values. It generalizes the hesitant adaptive search, which in turn is a gener-alization of the pure adaptive search. In this paper, we use ideas from the theory of stochastic processes to determine the full distribution of the number of iterations to convergence for the backtracking adaptive search.
Original language | English |
---|---|
Pages (from-to) | 547-562 |
Number of pages | 16 |
Journal | Journal of Optimization Theory and Applications |
Volume | 128 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2006 |