Beach sand of SE Australia traced by zircon ages through Ordovician turbidites and S-type granites of the Lachlan Orogen to Africa/Antarctica

a review

J. J. Veevers*

*Corresponding author for this work

    Research output: Contribution to journalReview article

    16 Citations (Scopus)

    Abstract

    The Quaternary beach sand of SE Australia, driven northward by southern swell, contains zircons with dominant U–Pb ages of 700–500 Ma, model ages (T DMc) of 2.2 Ga to 1.0 Ga, and ϵ Hf of +12 to –30, indicating a host rock type of granitoids with alkaline affinity. These properties match those of detrital zircons in the Middle Triassic (ca 240 Ma) Hawkesbury Sandstone (T DMc of 2.1 to 1.0 Ga, ϵ Hf of +8 to –40, alkaline granitoids) and the Ordovician (ca 460 Ma) turbidites and ca 430 Ma S-type granitoids of the Lachlan Orogen (T 2DM of 2.0 to 1.0 Ga, ϵ Hf of +5 to –30), all of which are identified as proximal provenances. Superimposed are the ca 400 Ma zircons in beaches in the south backed by the 420–375 Ma I-type Bega Batholith, and ca 350 Ma and ca 250 Ma zircons in the north backed by the New England Orogen. The Ordovician turbidites, part of a deep-sea super-fan, were fed by the detritus of the exhumed 700–500 Ma Transgondwanan Supermountains atop the East African–Antarctic Orogen. At the same time, the ancestral Gamburtsev Subglacial Mountains of East Antarctica probably contributed a subsidiary fan of 700–500 Ma sediment. Primary zircons aged 600–500 Ma in igneous and metamorphic rocks in Australia and the ancestral Transantarctic Mountains are minor contributors of the Australian sediments. The properties of the 700–500 Ma primary zircons in the East African–Antarctic Orogen are traceable through the first-cycle Ordovician turbidite and intruding second-cycle granite, and younger sediment, such as the third-cycle Triassic Hawkesbury Sandstone and the third-cycle beach sand. The sand at the northern terminus of the coastal system off Fraser Island spills over the shelf edge into the Tasman Abyssal Plain to reflect in miniature the deep-sea depositional environment of the Ordovician.

    Original languageEnglish
    Pages (from-to)385-408
    Number of pages24
    JournalAustralian Journal of Earth Sciences
    Volume62
    Issue number4
    DOIs
    Publication statusPublished - 19 May 2015

    Keywords

    • detrital zircon
    • U-Pb ages
    • Hf isotopes
    • beach sands
    • SE Australia
    • Gamburtsev Subglacial Mountains
    • East African-Antarctic Orogen

    Cite this