TY - JOUR
T1 - Behavior of circular concrete columns reinforced with hollow composite sections and GFRP bars
AU - Alajarmeh, Omar
AU - Manalo, Allan
AU - Benmokrane, Brahim
AU - Ferdous, Wahid
AU - Mohammed, Ali
AU - Abousnina, Rajab
AU - Elchalakani, Mohamed
AU - Edoo, Azam
PY - 2020/7
Y1 - 2020/7
N2 - Hollow concrete columns (HCCs) constitute a structurally efficient construction system for marine and offshore structures, including bridge piers and piles. Conventionally, HCCs reinforced with steel bars are vulnerable to corrosion and can lose functionality as a result, especially in harsh environments. Moreover, HCCs are subjected to brittle failure behavior by concrete crushing due to the absence of the concrete core. Therefore, this study investigated the use of glass fiber-reinforced polymer (GFRP) bars as a solution for corrosion and the use of hollow composite-reinforced sections (HCRSs) to confine the inner concrete wall in HCCs. Furthermore, this study conducted an in-depth assessment of the effect of the reinforcement configuration and reinforcement ratio on the axial performance of HCCs. Eight HCCs with the same lateral-reinforcement configuration were prepared and tested under monotonic loading until failure. The column design included a column without any longitudinal reinforcement, one reinforced longitudinally with an HCRS, one reinforced longitudinally with GFRP bars, three reinforced with HCRSs and different amounts of GFRP bars (4, 6, and 8 bars), and three reinforced with HCRSs and different diameters of GFRP bars (13, 16, 19 mm). The test results show that longitudinal reinforcement—whether GFRP bars or HCRSs—significantly enhanced the strength and displacement capacities of the HCCs. Increasing the amount of GFRP bars was more effective than increasing the bar diameter in increasing the confined strength and the displacement capacity. The axial-load capacity of the GFRP/HCRS-reinforced HCCs could be accurately estimated by calculating the load contribution of the longitudinal reinforcement, considering the axial strain at the concrete peak strength. A new confinement model considering the combined effect of the longitudinal and transverse reinforcement in the lateral confinement process was also developed.
AB - Hollow concrete columns (HCCs) constitute a structurally efficient construction system for marine and offshore structures, including bridge piers and piles. Conventionally, HCCs reinforced with steel bars are vulnerable to corrosion and can lose functionality as a result, especially in harsh environments. Moreover, HCCs are subjected to brittle failure behavior by concrete crushing due to the absence of the concrete core. Therefore, this study investigated the use of glass fiber-reinforced polymer (GFRP) bars as a solution for corrosion and the use of hollow composite-reinforced sections (HCRSs) to confine the inner concrete wall in HCCs. Furthermore, this study conducted an in-depth assessment of the effect of the reinforcement configuration and reinforcement ratio on the axial performance of HCCs. Eight HCCs with the same lateral-reinforcement configuration were prepared and tested under monotonic loading until failure. The column design included a column without any longitudinal reinforcement, one reinforced longitudinally with an HCRS, one reinforced longitudinally with GFRP bars, three reinforced with HCRSs and different amounts of GFRP bars (4, 6, and 8 bars), and three reinforced with HCRSs and different diameters of GFRP bars (13, 16, 19 mm). The test results show that longitudinal reinforcement—whether GFRP bars or HCRSs—significantly enhanced the strength and displacement capacities of the HCCs. Increasing the amount of GFRP bars was more effective than increasing the bar diameter in increasing the confined strength and the displacement capacity. The axial-load capacity of the GFRP/HCRS-reinforced HCCs could be accurately estimated by calculating the load contribution of the longitudinal reinforcement, considering the axial strain at the concrete peak strength. A new confinement model considering the combined effect of the longitudinal and transverse reinforcement in the lateral confinement process was also developed.
KW - Hollow concrete column
KW - GFRP bar
KW - Spiral
KW - Compressive load
KW - Lateral confinement
KW - Composite tube
KW - Design codes
UR - http://www.scopus.com/inward/record.url?scp=85084324307&partnerID=8YFLogxK
U2 - 10.1016/j.marstruc.2020.102785
DO - 10.1016/j.marstruc.2020.102785
M3 - Article
AN - SCOPUS:85084324307
SN - 0951-8339
VL - 72
SP - 1
EP - 17
JO - Marine Structures
JF - Marine Structures
M1 - 102785
ER -