Big data cleaning based on mobile edge computing in industrial sensor-cloud

Tian Wang, Haoxiong Ke, Xi Zheng, Kun Wang, Arun Kumar Sangaiah, Anfeng Liu

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

With the advent of 5G, the industrial Internet of Things has developed rapidly. The industrial sensor-cloud system (SCS) has also received widespread attention. In the future, a large number of integrated sensors that simultaneously collect multifeature data will be added to industrial SCS. However, the collected big data are not trustworthy due to the harsh environment of the sensor. If the data collected at the bottom networks are directly uploaded to the cloud for processing, the query and data mining results will be inaccurate, which will seriously affect the judgment and feedback of the cloud. The traditional method of relying on sensor nodes for data cleaning is insufficient to deal with big data, whereas edge computing provides a good solution. In this article, a new data cleaning method is proposed based on the mobile edge node during data collection. An angle-based outlier detection method is applied at the edge node to obtain the training data of the cleaning model, which is then established through support vector machine. Besides, online learning is adopted for model optimization. Experimental results show that multidimensional data cleaning based on mobile edge nodes improves the efficiency of data cleaning while maintaining data reliability and integrity, and greatly reduces the bandwidth and energy consumption of the industrial SCS.
Original languageEnglish
Pages (from-to)1321-1329
Number of pages9
JournalIEEE Transactions on Industrial Informatics
Volume16
Issue number2
Early online date2 Sep 2019
DOIs
Publication statusPublished - Feb 2020

    Fingerprint

Keywords

  • Data cleaning
  • edge computing
  • industrial Internet of Things (IIoT)
  • industrial sensor-cloud
  • online machine learning

Cite this