Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

Saeed Mohammadi Nasr, Navid Rabiee, Sakineh Hajebi, Sepideh Ahmadi, Yousef Fatahi, Masoumehossadat Hosseini, Mojtaba Bagherzadeh, Amir Mohammad Ghadiri, Mohammad Rabiee, Vahid Jajarmi, Thomas J. Webster*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

67 Citations (Scopus)
7 Downloads (Pure)


Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and renewability but have some significant drawbacks such as rapid degradation, insufficient electrical conductivity, immunological reaction, and poor mechanical properties for cardiac tissue engineering. Synthetic biodegradable polymers have some advantages such as strong mechanical properties, controlled structure, great processing flexibility, and usually no immunological concerns; however, they have some drawbacks such as a lack of cell attachment and possible low biocompatibility. Some applications have combined the best of both and exciting new natural/ synthetic composites have been utilized. Recently, the use of nanostructured polymers and polymer nanocomposites has revolutionized the field of cardiac tissue engineering due to their enhanced mechanical, electrical, and surface properties promoting tissue growth. In this review, recent research on the use of biodegradable natural/synthetic nanocomposite polymers in cardiac tissue engineering is presented with forward looking thoughts provided for what is needed for the field to mature.

Original languageEnglish
Pages (from-to)4205-4224
Number of pages20
JournalInternational Journal of Nanomedicine
Publication statusPublished - 2020
Externally publishedYes

Bibliographical note

Copyright the Author(s) 2020. Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher.


  • biodegradable polymer
  • tissue engineering
  • cardiac cell
  • composite
  • natural
  • synthetic


Dive into the research topics of 'Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine'. Together they form a unique fingerprint.

Cite this