TY - JOUR
T1 - Bioinspired lightweight cellular materials - Understanding effects of natural variation on mechanical properties
AU - Cadman, Joseph
AU - Chang, Che Cheng
AU - Chen, Junning
AU - Chen, Yuhang
AU - Zhou, Shiwei
AU - Li, Wei
AU - Li, Qing
PY - 2013/8/1
Y1 - 2013/8/1
N2 - Cuttlebone is a natural marine cellular material possessing the exceptional mechanical properties of high compressive strength, high porosity and high permeability. This combination of properties is exceedingly desirable in biomedical applications, such as bone tissue scaffolds. In light of recent studies, which converted raw cuttlebone into hydroxyapatite tissue scaffolds, the impact of morphological variations in the microstructure of this natural cellular material on the effective mechanical properties is explored in this paper. Two extensions of the finite element-based homogenization method are employed to account for deviations from the assumption of periodicity. Firstly, a representative volume element (RVE) of cuttlebone is systematically varied to reflect the large range of microstructural configurations possibly among different cuttlefish species. The homogenization results reveal the critical importance of pillar formation and aspect ratio (height/width of RVE) on the effective bulk and shear moduli of cuttlebone. Secondly, multi-cell analysis domains (or multiple RVE domains) permit the introduction of random variations across neighboring cells. Such random variations decrease the bulk modulus whilst displaying minimal impact on the shear modulus. Increasing the average size of random variations increases the effect on bulk modulus. Also, the results converge rapidly as the size of the analysis domain is increased, meaning that a relatively small multi-cell domain can provide a reasonable approximation of the effective properties for a given set of random variation parameters. These results have important implications for the proposed use of raw cuttlebone as an engineering material. They also highlight some potential for biomimetic design capabilities for materials inspired by the cuttlebone microstructure, which may be applicable in biomedical applications such as bone tissue scaffolds.
AB - Cuttlebone is a natural marine cellular material possessing the exceptional mechanical properties of high compressive strength, high porosity and high permeability. This combination of properties is exceedingly desirable in biomedical applications, such as bone tissue scaffolds. In light of recent studies, which converted raw cuttlebone into hydroxyapatite tissue scaffolds, the impact of morphological variations in the microstructure of this natural cellular material on the effective mechanical properties is explored in this paper. Two extensions of the finite element-based homogenization method are employed to account for deviations from the assumption of periodicity. Firstly, a representative volume element (RVE) of cuttlebone is systematically varied to reflect the large range of microstructural configurations possibly among different cuttlefish species. The homogenization results reveal the critical importance of pillar formation and aspect ratio (height/width of RVE) on the effective bulk and shear moduli of cuttlebone. Secondly, multi-cell analysis domains (or multiple RVE domains) permit the introduction of random variations across neighboring cells. Such random variations decrease the bulk modulus whilst displaying minimal impact on the shear modulus. Increasing the average size of random variations increases the effect on bulk modulus. Also, the results converge rapidly as the size of the analysis domain is increased, meaning that a relatively small multi-cell domain can provide a reasonable approximation of the effective properties for a given set of random variation parameters. These results have important implications for the proposed use of raw cuttlebone as an engineering material. They also highlight some potential for biomimetic design capabilities for materials inspired by the cuttlebone microstructure, which may be applicable in biomedical applications such as bone tissue scaffolds.
KW - Biomimetic materials
KW - Cuttlebone morphology
KW - Finite element-based homogenization
KW - Multi-cell domain
KW - Systematic and random variation
UR - http://www.scopus.com/inward/record.url?scp=84878246399&partnerID=8YFLogxK
U2 - 10.1016/j.msec.2013.03.031
DO - 10.1016/j.msec.2013.03.031
M3 - Article
C2 - 23706194
AN - SCOPUS:84878246399
VL - 33
SP - 3146
EP - 3152
JO - Materials Science and Engineering C
JF - Materials Science and Engineering C
SN - 0928-4931
IS - 6
ER -