TY - JOUR
T1 - Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks
AU - Pham, Tien Dat
AU - Yoshino, Kunihiko
AU - Bui, Dieu Tien
PY - 2017
Y1 - 2017
N2 - This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha−1 (average = 55.8 Mg ha−1); below-ground biomass ranged between 4.06 and 436.47 Mg ha−1 (average = 81.47 Mg ha−1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha−1 (average = 64.52 Mg C ha−1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.
AB - This study tested the use of machine learning techniques for the estimation of above-ground biomass (AGB) of Sonneratia caseolaris in a coastal area of Hai Phong city, Vietnam. We employed a GIS database and multi-layer perceptron neural networks (MLPNN) to build and verify an AGB model, drawing upon data from a survey of 1508 mangrove trees in 18 sampling plots and ALOS-2 PALSAR imagery. We assessed the model’s performance using root-mean-square error, mean absolute error, coefficient of determination (R2), and leave-one-out cross-validation. We also compared the model’s usability with four machine learning techniques: support vector regression, radial basis function neural networks, Gaussian process, and random forest. The MLPNN model performed well and outperformed the machine learning techniques. The MLPNN model-estimated AGB ranged between 2.78 and 298.95 Mg ha−1 (average = 55.8 Mg ha−1); below-ground biomass ranged between 4.06 and 436.47 Mg ha−1 (average = 81.47 Mg ha−1), and total carbon stock ranged between 3.22 and 345.65 Mg C ha−1 (average = 64.52 Mg C ha−1). We conclude that ALOS-2 PALSAR data can be accurately used with MLPNN models for estimating mangrove forest biomass in tropical areas.
KW - multi-layer perceptron neural networks
KW - ALOS-2 PALSAR
KW - biomass
KW - Hai Phong
KW - Sonneratia caseolaris
UR - http://www.scopus.com/inward/record.url?scp=85006851453&partnerID=8YFLogxK
U2 - 10.1080/15481603.2016.1269869
DO - 10.1080/15481603.2016.1269869
M3 - Article
SN - 1548-1603
VL - 54
SP - 329
EP - 353
JO - GIScience and Remote Sensing
JF - GIScience and Remote Sensing
IS - 3
ER -